Introduction: Advances in adoptive immunotherapy have enabled gene therapy approaches to be tested in clinical trials that involve the transfer of engineered immune cells to specifically target HIV-infected cells or block HIV infection or transmission. Genetic editing through engineered targeted nucleases provides a method for producing cells that are permanently resistant to HIV.

Areas Covered: Here, we discuss current and developing gene therapy approaches aimed to confer resistance to HIV infection at the cellular level by targeting viral or cellular elements, with a focus on gene editing strategies that target viral entry. Human gene therapy trials in HIV infection are reviewed.

Expert Opinion: In concept, a single infusion of genetically modified cells could potentially reduce the need for lifelong medication by providing long-term control over the virus (functional immunity). While the dream of completely eliminating viral reservoirs (sterilizing immunity) is appealing, this presents a significant additional hurdle and may not be necessary to improve long-term health. A single infusion, or a small number of infusions, of engineered cells may be shown in confirmatory clinical trials to produce a meaningful biologic effect. These techniques have implications for targeted gene therapy in HIV and other diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1517/14712598.2015.1035644DOI Listing

Publication Analysis

Top Keywords

gene therapy
20
hiv infection
12
control virus
8
therapy approaches
8
clinical trials
8
single infusion
8
therapy
5
hiv
5
gene
5
cells
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!