To what extent can charge localization influence electron injection efficiency at graphene-porphyrin interfaces?

Phys Chem Chem Phys

Solar and Photovoltaics Engineering Research Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.

Published: June 2015

AI Article Synopsis

  • Researchers are focusing on enhancing electron transfer between donor-acceptor interfaces, a field that remains underexplored.
  • The study demonstrates a significant 120% improvement in electron injection efficiency from cationic porphyrin to graphene carboxylate by using β-cyclodextrin to control charge localization.
  • The text also outlines the detailed mechanism behind this enhanced electron transfer process.

Article Abstract

Controlling the electron transfer process at donor-acceptor interfaces is a research direction that has not yet seen much progress. Here, with careful control of the charge localization on the porphyrin macrocycle using β-cyclodextrin as an external cage, we are able to improve the electron injection efficiency from cationic porphyrin to graphene carboxylate by 120%. The detailed reaction mechanism is also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cp02362aDOI Listing

Publication Analysis

Top Keywords

charge localization
8
electron injection
8
injection efficiency
8
extent charge
4
localization influence
4
influence electron
4
efficiency graphene-porphyrin
4
graphene-porphyrin interfaces?
4
interfaces? controlling
4
controlling electron
4

Similar Publications

A non-purine inhibitor of xanthine oxidoreductase mitigates adenosine triphosphate degradation under hypoxic conditions in mouse brain.

Brain Res

January 2025

Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan. Electronic address:

The brain is an organ that consumes a substantial amount of oxygen, and a reduction in oxygen concentration can rapidly lead to significant and irreversible brain injury. The progression of brain injury during hypoxia involves the depletion of intracellular adenosine triphosphate (ATP) due to decreased oxidative phosphorylation in the inner mitochondrial membrane. Allopurinol is a purine analog inhibitor of xanthine oxidoreductase that protects against hypoxic/ischemic brain injury; however, its underlying mechanism of action remains unclear.

View Article and Find Full Text PDF

Energy-level rich nanorings hybridizing Ag, Au and AgCl as high-performance SERS substrate for numerous molecules.

Talanta

January 2025

MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, China. Electronic address:

The current surface-enhanced Raman scattering (SERS) substrates typically feature a single energy level, posing challenges in coordinating electromagnetic enhancement (EM) and chemical enhancement (CM), thereby limiting the sensitive detection of numerous crucial target molecules. In this study, novel aggregated nanorings (a-NRs) hybridizing Ag, Au and AgCl are constructed as SERS substrates. On one hand, the obtained a-NRs exhibit robust localized surface plasmon resonance absorption, whose wavelength can be tuned to match three commonly used laser wavelengths (532, 633 and 785 nm) to gain strong EM effect.

View Article and Find Full Text PDF

Microbial induced carbonate precipitation (MICP) shows great potential for metals recovery from secondary sources, which is vital for circular economy. This study explores the feasibility of using Sporosarcina pasteurii for MICP to recover copper (Cu) and zinc (Zn) from acidogenic anaerobic digestates at laboratory scale. Pre-cultured S.

View Article and Find Full Text PDF

Anisotropic Plasmon Resonance in TiCT MXene Enables Site-Selective Plasmonic Catalysis.

ACS Nano

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China.

The ever-growing interest in MXenes has been driven by their distinct electrical, thermal, mechanical, and optical properties. In this context, further revealing their physicochemical attributes remains the key frontier of MXene materials. Herein, we report the anisotropic localized surface plasmon resonance (LSPR) features in TiCT MXene as well as site-selective photocatalysis enabled by the photophysical anisotropy.

View Article and Find Full Text PDF

A fast BEM (boundary element method) based approach is developed to solve an EEG/MEG forward problem for a modern high-resolution head model. The method utilizes a charge-based BEM accelerated by the fast multipole method (BEM-FMM) with an adaptive mesh pre-refinement method (called b-refinement) close to the singular dipole source(s). No costly matrix-filling or direct solution steps typical for the standard BEM are required; the method generates on-skin voltages as well as MEG magnetic fields for high-resolution head models within 90 seconds after initial model assembly using a regular workstation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!