The classic dynamic clamp technique uses a real-time electrical interface between living cells and neural simulations in order to investigate hypotheses about neural function and structure. One of the acknowledged drawbacks of that technique is the limited control of the cells' chemical microenvironment. In this manuscript, we use a novel combination of nanosensor and microfluidic technology and microfluidic and neural simulations to add sensing and control of chemical concentrations to the dynamic clamp technique. Specifically, we use a microfluidic lab-on-a-chip to generate distinct chemical concentration gradients (ions or neuromodulators), to register the concentrations with embedded nanosensors and use the processed signals as an input to simulations of a neural cell. The ultimate goal of this project is to close the loop and provide sensor signals to the microfluidic lab-on-a-chip to mimic the interaction of the simulated cell with other cells in its chemical environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481920 | PMC |
http://dx.doi.org/10.3390/s150510465 | DOI Listing |
PLoS Comput Biol
January 2025
School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China.
This study combines experimental techniques and mathematical modeling to investigate the dynamics of C. elegans body-wall muscle cells. Specifically, by conducting voltage clamp and mutant experiments, we identify key ion channels, particularly the L-type voltage-gated calcium channel (EGL-19) and potassium channels (SHK-1, SLO-2), which are crucial for generating action potentials.
View Article and Find Full Text PDFACS Omega
January 2025
Applied Chemistry and Environment Laboratory, Applied Bioorganic Chemistry Team, Faculty of Science, Ibn Zohr University, Agadir 80000, Morocco.
The goal of this study was to synthesize and evaluate new antimicrobial compounds. We specifically focused on the development of 2,5-disubstituted tetrazole derivatives containing the O-methyl-2,3-O-isopropylidene-(D)-ribofuranoside groups through N-alkylation reactions. The synthesized compounds were characterized using H and C nuclear magnetic resonance (NMR) spectroscopy.
View Article and Find Full Text PDFHeliyon
January 2025
School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India.
Background: Growing evidence indicates that disruptions in mitochondrial quality management contribute to the development of acute kidney injury (AKI), incomplete or maladaptive kidney repair, and chronic kidney disease. However, the temporal dynamics of mitochondrial quality control alterations in relation to renal injury and its recovery remain poorly understood and are addressed in this manuscript.
Method: ology: Male Wistar rats (n = 60) were subjected to varying durations of ischemia and reperfusion.
Angew Chem Int Ed Engl
January 2025
Nanjing University, School of Chemistry and Chemical Engineering, 163 Xianlin Avenu, 210023, Nanjing, CHINA.
Glycans, unlike uniformly charged DNA and compositionally diverse peptides, are typically uncharged and exhibit rich stereoisomeric diversity in the glycosidic bonds between two monosaccharide units. This heterogeneity of charge and the structural complexity present significant challenges for accurate analysis. Herein, we developed a novel single-molecule oligosaccharide sensor, OmpF nanopore.
View Article and Find Full Text PDFChin J Nat Med
January 2025
Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China. Electronic address:
Astragali Radix (AR) and Notoginseng Radix et Rhizoma (NR) are frequently employed in cardiovascular disease treatment. However, the efficacy of the AR-NR medicine pair (AN) in improving cardiac remodeling and its underlying mechanism remains unclear. This study aimed to evaluate AN's cardioprotective effect and potential mechanism on cardiac remodeling using transverse aortic constriction (TAC) in mice and angiotensin II (Ang II)-induced neonatal rat cardiomyocytes (NRCMs) and fibroblasts in vitro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!