Autologous Adipose Stromal Cells Seeded onto a Human Collagen Matrix for Dermal Regeneration in Chronic Wounds: Clinical Proof of Concept.

Plast Reconstr Surg

Brussels, Belgium From the Endocrine Cell Therapy Unit, Center of Tissue/Cell Therapy, Institut de Recherche Expérimentale et Clinique, Plastic and Reconstructive Surgery Unit, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Unit, Center for Human Genetics and Human Molecular Genetics, de Duve Institute, Cliniques Universitaires Saint-Luc, Cardiovascular Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain.

Published: August 2015

Background: Nonhealing wounds are unable to integrate skin autografts by avascular and fibrotic dermal tissue. Adipose-derived stromal cells can improve the local environment of the wound bed by angiogenesis and immunomodulation. This work aimed to develop a biological dressing made of adipose-derived stromal cells onto a human acellular collagen matrix.

Methods: Adipose-derived stromal cells were isolated from human adipose tissue (n = 8). In vitro, the genetic stability during early and late passages (1, 4, 10, and 16) and vascular endothelial growth factor (VEGF) secretion were assessed. Adipose-derived stromal cell adhesion and spreading on collagen matrix were preliminarily studied. In vivo tumorigenicity, angiogenesis, and tissue oxygenation were assessed after implantation of the construct in nude rats (n = 10). The biological dressing was manufactured and implanted in three patients with chronic wounds.

Results: In vitro, aneuploidies, but no clonal transformation, were detected up to late cellular passages. VEGF was secreted more during hypoxia (0.1% oxygen) than during normoxia (21% oxygen). Adipose-derived stromal cells can adhere and spread on the scaffold within 18 to 20 days. No tumor development occurred 3 months after implantation in immunocompromised rats. Vessel counts and tissue oxygenation were higher after adipose-derived stromal cell implantation. In patients, granulation tissue was found (276 percent of vessel density), followed by epithelialization or split-thickness skin engraftment up to 22 months after implantation.

Conclusions: Implantation of adipose-derived stromal cells seeded onto human acellular collagen matrix (biological dressing) represents a promising therapy for nonhealing wounds, offering improvement in dermal angiogenesis and remodeling. This therapy using autologous stromal cells is safe, without significant genetic alterations after in vitro expansion.

Download full-text PDF

Source
http://dx.doi.org/10.1097/PRS.0000000000001437DOI Listing

Publication Analysis

Top Keywords

stromal cells
28
adipose-derived stromal
28
collagen matrix
12
biological dressing
12
stromal
9
cells seeded
8
seeded human
8
nonhealing wounds
8
human acellular
8
acellular collagen
8

Similar Publications

Ovarian cancer (OC) ranks as the fifth leading cause of cancer-related deaths in the United States, posing a significant threat to female health. Late-stage diagnoses, driven by elusive symptoms often masquerading as gastrointestinal issues, contribute to a concerning 70% of cases being identified in advanced stages. While early-stage OC brags a 90% cure rate, progression involving pelvic organs or extending beyond the peritoneal cavity drastically diminishes it.

View Article and Find Full Text PDF

Revisiting the unobtrusive role of exogenous stem cells beyond neural circuits replacement in spinal cord injury repair.

Theranostics

January 2025

Department of biochemistry and molecular biology, College of Life Sciences, Central South University, Changsha, 410078, Hunan, China.

Stem cell transplantation is a promising strategy to establish neural relays in situ for spinal cord injury (SCI) repair. Recent research has reported short-term survival of exogenous cells, irrespective of immunosuppressive drugs (ISD), results in similar function recovery, though the mechanisms remain unclear. This study aims to validate this short-term repair effect and the potential mechanisms in large animals.

View Article and Find Full Text PDF

Background: The persistently high mortality and morbidity rates of hepatocellular carcinoma (HCC) remain a global concern. Notably, the disruptions in mitochondrial cholesterol metabolism (MCM) play a pivotal role in the progression and development of HCC, underscoring the significance of this metabolic pathway in the disease's etiology. The purpose of this research was to investigate genes associated with MCM and develop a model for predicting the prognostic features of patients with HCC.

View Article and Find Full Text PDF

Background: Regulatory T cells (Tregs) play a pivotal role in the development, prognosis, and treatment of breast cancer. This study aimed to develop a Treg-associated gene signature that contributes to predict prognosis and therapy benefits in breast cancer.

Methods: Treg-associated genes were screened based on single-cell RNA-sequencing (RNA-seq) in TISCH2 database and the bulk RNA-seq in The Cancer Genome Atlas (TCGA) database.

View Article and Find Full Text PDF

Statement Of The Problem: Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer. During the invasion, tumour cells break through the basement membrane and penetrate the connective tissue to interact with the extracellular matrix. An attempt was made to evaluate the connective tissue changes in different grades of OSCCs, oral submucous fibrosis (OSMF) and Oral Epithelial Dysplasias.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!