Background: Nonhealing wounds are unable to integrate skin autografts by avascular and fibrotic dermal tissue. Adipose-derived stromal cells can improve the local environment of the wound bed by angiogenesis and immunomodulation. This work aimed to develop a biological dressing made of adipose-derived stromal cells onto a human acellular collagen matrix.
Methods: Adipose-derived stromal cells were isolated from human adipose tissue (n = 8). In vitro, the genetic stability during early and late passages (1, 4, 10, and 16) and vascular endothelial growth factor (VEGF) secretion were assessed. Adipose-derived stromal cell adhesion and spreading on collagen matrix were preliminarily studied. In vivo tumorigenicity, angiogenesis, and tissue oxygenation were assessed after implantation of the construct in nude rats (n = 10). The biological dressing was manufactured and implanted in three patients with chronic wounds.
Results: In vitro, aneuploidies, but no clonal transformation, were detected up to late cellular passages. VEGF was secreted more during hypoxia (0.1% oxygen) than during normoxia (21% oxygen). Adipose-derived stromal cells can adhere and spread on the scaffold within 18 to 20 days. No tumor development occurred 3 months after implantation in immunocompromised rats. Vessel counts and tissue oxygenation were higher after adipose-derived stromal cell implantation. In patients, granulation tissue was found (276 percent of vessel density), followed by epithelialization or split-thickness skin engraftment up to 22 months after implantation.
Conclusions: Implantation of adipose-derived stromal cells seeded onto human acellular collagen matrix (biological dressing) represents a promising therapy for nonhealing wounds, offering improvement in dermal angiogenesis and remodeling. This therapy using autologous stromal cells is safe, without significant genetic alterations after in vitro expansion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/PRS.0000000000001437 | DOI Listing |
Curr Med Chem
January 2025
Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India.
Ovarian cancer (OC) ranks as the fifth leading cause of cancer-related deaths in the United States, posing a significant threat to female health. Late-stage diagnoses, driven by elusive symptoms often masquerading as gastrointestinal issues, contribute to a concerning 70% of cases being identified in advanced stages. While early-stage OC brags a 90% cure rate, progression involving pelvic organs or extending beyond the peritoneal cavity drastically diminishes it.
View Article and Find Full Text PDFTheranostics
January 2025
Department of biochemistry and molecular biology, College of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
Stem cell transplantation is a promising strategy to establish neural relays in situ for spinal cord injury (SCI) repair. Recent research has reported short-term survival of exogenous cells, irrespective of immunosuppressive drugs (ISD), results in similar function recovery, though the mechanisms remain unclear. This study aims to validate this short-term repair effect and the potential mechanisms in large animals.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Department of Biomedical Engineering, School of Life Sciences, Guangxi Medical University, Nanning, China.
Background: The persistently high mortality and morbidity rates of hepatocellular carcinoma (HCC) remain a global concern. Notably, the disruptions in mitochondrial cholesterol metabolism (MCM) play a pivotal role in the progression and development of HCC, underscoring the significance of this metabolic pathway in the disease's etiology. The purpose of this research was to investigate genes associated with MCM and develop a model for predicting the prognostic features of patients with HCC.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
Background: Regulatory T cells (Tregs) play a pivotal role in the development, prognosis, and treatment of breast cancer. This study aimed to develop a Treg-associated gene signature that contributes to predict prognosis and therapy benefits in breast cancer.
Methods: Treg-associated genes were screened based on single-cell RNA-sequencing (RNA-seq) in TISCH2 database and the bulk RNA-seq in The Cancer Genome Atlas (TCGA) database.
Ecancermedicalscience
November 2024
Department of Public Health Dentistry, DY Patil University School of Dentistry, Nerul Navi Mumbai, Sector 7, Nerul, Navi Mumbai 400706, Maharashtra, India.
Statement Of The Problem: Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer. During the invasion, tumour cells break through the basement membrane and penetrate the connective tissue to interact with the extracellular matrix. An attempt was made to evaluate the connective tissue changes in different grades of OSCCs, oral submucous fibrosis (OSMF) and Oral Epithelial Dysplasias.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!