Effect of Rhizobium and arbuscular mycorrhizal fungi inoculation on electrolyte leakage in Phaseolus vulgaris roots overexpressing RbohB.

Plant Signal Behav

a Departamento de Biología Molecular de Plantas ; Instituto de Biotecnología ; Universidad Nacional Autónoma de México (UNAM) ; Cuernavaca , México.

Published: February 2016

Respiratory oxidative burst homolog (RBOH)-mediated reactive oxygen species (ROS) regulate a wide range of biological functions in plants. They play a critical role in the symbiosis between legumes and nitrogen-fixing bacteria or arbuscular mycorrhizal (AM) fungi. For instance, overexpression of PvRbohB enhances nodule numbers, but reduces mycorrhizal colonization in Phaseolus vulgaris hairy roots and downregulation has the opposite effect. In the present study, we assessed the effect of both rhizobia and AM fungi on electrolyte leakage in transgenic P. vulgaris roots overexpressing (OE) PvRbohB. We demonstrate that elevated levels of electrolyte leakage in uninoculated PvRbohB-OE transgenic roots were alleviated by either Rhizobium or AM fungi symbiosis, with the latter interaction having the greater effect. These results suggest that symbiont colonization reduces ROS elevated electrolyte leakage in P. vulgaris root cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5155376PMC
http://dx.doi.org/10.1080/15592324.2015.1011932DOI Listing

Publication Analysis

Top Keywords

electrolyte leakage
16
arbuscular mycorrhizal
8
mycorrhizal fungi
8
phaseolus vulgaris
8
vulgaris roots
8
roots overexpressing
8
rhizobium arbuscular
4
fungi
4
fungi inoculation
4
electrolyte
4

Similar Publications

BPC1 and BPC2 positively regulates the waterlogging stress tolerance in Arabidopsis thaliana.

Biochem Biophys Res Commun

January 2025

Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China. Electronic address:

Waterlogging stress is a significant abiotic factor that severely limits plant growth and development. Identifying genes involved in the waterlogging stress response and understanding the mechanisms by which plants resist waterlogging stress are therefore critical. In this study, we identified a specific role for two transcription factors, BPC1 and BPC2, in the waterlogging stress response of Arabidopsis thaliana.

View Article and Find Full Text PDF

Improving Ni Tolerance of Arabidopsis by Overexpressing Bacterial Gene Encoding a Membrane-Bound Exporter of Ni.

Int J Mol Sci

December 2024

Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.

The prerequisite for breeding a plant to be used in phytoremediation is its high tolerance to grow normally in soil contaminated by certain heavy metals. As mechanisms of plant uptake and transport of nickel (Ni) are not fully understood, it is of significance to utilize exogenous genes for improving plant Ni tolerance. In this study, from encoding an exporter of Ni and cobalt was overexpressed constitutively in , and the performance of transgenic plants was assayed under Ni stress.

View Article and Find Full Text PDF

Overexpression of StBBX14 Enhances Cold Tolerance in Potato.

Plants (Basel)

December 2024

Guizhou Institute of Biotechnology, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550003, China.

Potato ( L.) is an important food crop, but low temperature affects the potato growth and yield. In this study, the expression level of was significantly increased over 1 h and then gradually decreased under cold stress.

View Article and Find Full Text PDF

Soil contamination with toxic heavy metals [such as aluminum (Al)] is becoming a serious global problem due to the rapid development of the social economy. Although plant growth-promoting rhizo-bacteria (PGPR) are the major protectants to alleviate metal toxicity, the study of these bacteria to ameliorate the toxic effects of Al is limited. Therefore, the present study was conducted to investigate the combined effects of different levels of (5 ppm and 10 ppm) of accession number of MT123456 on plant growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress and response of antioxidant compounds (enzymatic and nonenzymatic), and their specific gene expression, sugars, nutritional status of the plant, organic acid exudation pattern and Al accumulation from the different parts of the plants, which was spiked with different levels of Al [0 µM (i.

View Article and Find Full Text PDF

A Chain Entanglement Gelled SnO₂ Electron Transport Layer for Enhanced Perovskite Solar Cell Performance and Effective Lead Capture.

Adv Mater

January 2025

School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan, 250100, China.

SnO₂ is a widely used electron transport layer (ETL) material in perovskite solar cells (PSCs), and its design and optimization are essential for achieving efficient and stable PSCs. In this study, the in situ formation of a chain entanglement gel polymer electrolyte is reported in an aqueous phase, integrated with SnO₂ as the ETL. Based on the self-polymerization of 3-[[2-(methacryloyloxy)ethyl]dimethylammonium]propane-1-sulfonic acid (DAES) in an aqueous environment, combining the catalytic effect of LiCl (as a Lewis acid) with the salting-out effect, and the introduction of polyvinylpyrrolidone (PVP) as the other polymer chain, a chain entanglement gelled SnO (G-SnO) structure is successfully constructed with a wide range of functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!