Th1-Like ICOS+ Foxp3+ Treg Cells Preferentially Express CXCR3 and Home to β-Islets during Pre-Diabetes in BDC2.5 NOD Mice.

PLoS One

Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada, H3A 2B4; Microbiome and Disease Tolerance Centre, McGill University, Montreal, QC, Canada, H3A 2B4; FOCIS Center of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montreal, QC, Canada, H3G 1A4.

Published: April 2016

AI Article Synopsis

Article Abstract

Type 1 diabetes (T1D) occurs through a breakdown of self-tolerance resulting in the autoimmune destruction of the insulin producing β-islets of the pancreas. A numerical and functional waning of CD4+ Foxp3+ regulatory T (Treg) cells, prompted by a pancreatic IL-2 deficiency, accompanies Th1 autoimmunity and T1D progression in non-obese diabetic (NOD) mice. Recently, we identified a dominant subset of intra-islet Treg cells that expresses the ICOS costimulatory receptor and promotes self-tolerance delaying the onset of T1D. ICOS co-stimulation potently enhances IL-2 induced survival and proliferation, and suppressive activity of Treg cells in situ. Here, we propose an ICOS-dependent mechanism of Treg cell homing to the β-islets during pre-diabetes in the NOD model via upregulation of the CXCR3 chemokine receptor. The islet-specific ICOS+ Treg cell subset preferentially expresses CXCR3 in the pancreatic lymph nodes (pLN) in response to Teff cell-mediated pancreatic inflammation, an expression correlating with the onset and magnitude of IFN-γ production by Teff cells in pancreatic sites. We also reveal that intra-pancreatic APC populations and insulin-producing β, but not α nor δ, islet cells secrete the CXCR3 chemokines, CXCL9, 10 and 11, and selectively promote ICOS+ CXCR3+ Treg cell chemotaxis in vitro. Strikingly, islet-derived Treg cells also produce these chemokines suggesting an auto-regulation of homing by this subset. Unlike ICOS- cells, ICOS+ Treg cells adopt a Th1-like Treg phenotype while maintaining their suppressive capacity, characterized by expression of T-bet and CXCR3 and production of IFN-γ in the draining pLNs. Finally, in vivo neutralization of IFN-γ blocked Treg cell CXCR3 upregulation evincing its role in regulating expression of this chemokine receptor by Treg cells. Thus, CXCR3-mediated trafficking of Treg cells could represent a mechanism of homeostatic immunoregulation during diabetogeneesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4422433PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126311PLOS

Publication Analysis

Top Keywords

treg cells
32
treg cell
16
treg
13
cells
11
β-islets pre-diabetes
8
nod mice
8
chemokine receptor
8
icos+ treg
8
cxcr3
6
th1-like icos+
4

Similar Publications

CD4FOXP3Exon2 regulatory T cell frequency predicts breast cancer prognosis and survival.

Sci Adv

January 2025

Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", IEOS-CNR, Napoli, Italy.

CD4FOXP3 regulatory T cells (T) suppress immune responses to tumors, and their accumulation in the tumor microenvironment (TME) correlates with poor clinical outcome in several cancers, including breast cancer (BC). However, the properties of intratumoral T remain largely unknown. Here, we found that a functionally distinct subpopulation of T, expressing the FOXP3 Exon2 splicing variants, is prominent in patients with hormone receptor-positive BC with poor prognosis.

View Article and Find Full Text PDF

Typical epidermodysplasia verruciformis (EV) is a rare, autosomal recessive disorder characterized by an unusual susceptibility to infection with specific skin-trophic types of human papillomavirus, principally betapapillomaviruses, and a propensity for developing malignant skin tumors in sun exposed regions. Its etiology reflects biallelic loss-of-function mutations in TMC6 (EVER1), TMC8 (EVER2) or CIB1. A TMC6-TMC8-CIB1 protein complex in the endoplasmic reticulum is hypothesized to be a restriction factor in keratinocytes for βHPV infection.

View Article and Find Full Text PDF

Objective: Abnormal levels and imbalances of T cell subsets are common in recurrent spontaneous abortion (RSA) patients, but most studies have small sample sizes, and comprehensive evaluations are lacking. Therefore, this meta-analysis aimed to comprehensively investigate T cell subsets and their ratios in RSA patients.

Methods: Four databases (PubMed, EMBASE, Web of Science, and Cochrane Library databases) were searched until 10 January 2024.

View Article and Find Full Text PDF

Engineered extracellular vesicles as "supply vehicles" to alleviate type 1 diabetes.

Extracell Vesicles Circ Nucl Acids

November 2024

The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, Guangdong, China.

Recent findings have indicated that the deficiency of inhibitory programmed cell death ligand 1 (PD-L1) and galectin-9 (Gal-9) in pancreatic β-cells is associated with the progression of type 1 diabetes (T1D). This suggests that exogenous PD-L1 and Gal-9 may have promising potential as therapeutics for the treatment of T1D. In light of these reports, a recent work investigated the potential of artificial extracellular vesicles (aEVs) with the presentation of PD-L1 and Gal-9 ligands (PD-L1-Gal-9 aEVs) as a treatment for T1D, with the findings published in .

View Article and Find Full Text PDF

The Immune System: An Arrow to the Heart and Principles of Cardioimmunology as an Emerging Branch of Medicine.

Curr Vasc Pharmacol

January 2025

Unit of Cardiovascular Diseases, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy.

Background: Cardioimmunology is an emerging branch of medicine whose development has been facilitated by more sophisticated diagnostic procedures. Recent studies have mainly focused on the immune response during myocardial infarction (MI), and there is evidence that both resident and external immune cells participate in acute inflammatory disease, as well as tissue remodeling. Cardiac Innate Immune Cells: Following MI, macrophages, dendritic cells (DCs) and mast cells (MCs) are the main players in the heart.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!