The Danish Organic Action Plan 2020: assessment method and baseline status of organic procurement in public kitchens.

Public Health Nutr

1Division of Nutrition,National Food Institute, Technical University of Denmark,Mørkhøj Bygade 19,DK-2860 Søborg,Denmark.

Published: September 2015

Objective: With political support from the Danish Organic Action Plan 2020, organic public procurement in Denmark is expected to increase. In order to evaluate changes in organic food procurement in Danish public kitchens, reliable methods are needed. The present study aimed to compare organic food procurement measurements by two methods and to collect and discuss baseline organic food procurement measurements from public kitchens participating in the Danish Organic Action Plan 2020.

Design: Comparison study measuring organic food procurement by applying two different methods, one based on the use of procurement invoices (the Organic Cuisine Label method) and the other on self-reported procurement (the Dogme method). Baseline organic food procurement status was based on organic food procurement measurements and background information from public kitchens.

Setting: Public kitchens participating in the six organic food conversion projects funded by the Danish Organic Action Plan 2020 during 2012 and 2013.

Subjects: Twenty-six public kitchens (comparison study) and 345 public kitchens (baseline organic food procurement status).

Results: A high significant correlation coefficient was found between the two organic food procurement measurement methods (r=0·83, P<0·001) with measurements relevant for the baseline status. Mean baseline organic food procurement was found to be 24 % when including measurements from both methods.

Conclusions: The results indicate that organic food procurement measurements by both methods were valid for the baseline status report of the Danish Organic Action Plan 2020. Baseline results in Danish public kitchens suggest there is room for more organic as well as sustainable public procurement in Denmark.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10271801PMC
http://dx.doi.org/10.1017/S1368980015001421DOI Listing

Publication Analysis

Top Keywords

organic food
36
food procurement
32
public kitchens
24
danish organic
16
organic action
16
action plan
16
organic
15
plan 2020
12
procurement
12
procurement measurements
12

Similar Publications

Polysaccharides-Directed Biomineralization of Enzymes in Hierarchical Zeolite Imidazolate Frameworks for Electrochemical Detection of Phenols.

ACS Appl Mater Interfaces

January 2025

Lab of Applied Biocatalysis, National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong China.

Biomineralization of enzymes inside rigid metal-organic frameworks (MOFs) is appealing due to its biocompatibility and simplicity. However, this strategy has hitherto been limited to microporous MOFs, leading to low apparent enzymatic activity. In this study, polysaccharide sodium alginate is introduced during the biomineralization of enzymes in zeolitic imidazolate frameworks (ZIFs) to competitively coordinate with metal ions, which endows the encapsulated enzyme with a 7-fold higher activity than that in microporous ZIFs.

View Article and Find Full Text PDF

Hydrogen-bonded organic frameworks (HOFs) are under fast development in broad applications but have not been well explored for chemiresistive gas sensing yet primarily due to insufficient active sites. Herein, a new porphyrin-based HOF-199 is constructed by OH···O hydrogen bonds featuring layered networks and rich free oxygen (O) atoms, which is further exfoliated into few-layer nonosheets with more dangling O sites through an ultrasound-assisted liquid exfoliation method (namely L-HOF-199). Benefiting from rich electron-donor sites, L-HOF-199 demonstrates exceptional NO sensing properties under ambient conditions, achieving a remarkable 3.

View Article and Find Full Text PDF

Poly(lactic) (PLA) is a biodegradable material obtained from renewable resources and is recognized as a safe biopolymer by the Food and Drug Administration. PLA expresses excellent mechanical and moldability attributes nonetheless poor elasticity/functionality limits its widespread utilization. One approach to compensate for this is chemical surface modification through free radical grafting with small organic molecules like maleic anhydride (MA).

View Article and Find Full Text PDF

A novel fluorescent sensor for highly sensitive detection of ascorbic acid in food based on inhibiting phosphatase-like activity of Zr-based MOF.

Food Chem

January 2025

Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, China. Electronic address:

Nanozyme-based sensors for detecting ascorbic acid (AA) generally depend on the reducibility of the analyte. However, these sensors are susceptible to interference from reducing substances in food. Herein, a novel fluorescent sensor for AA detection was developed based on inhibiting the phosphatase-like activity of a Zr-based metal-organic framework (Zr-CAU-28).

View Article and Find Full Text PDF

The western Indian continental shelf (eastern Arabian Sea) exhibits contrasting biogeochemical features. This area becomes highly productive due to summer monsoon-driven coastal upwelling in the south and winter monsoon-induced convective mixing in the north. Additionally, in the northern self, the eastern boundary of the Oxygen Minimum Zone (OMZ) persists but is absent in the south.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!