Surface-hopping dynamics simulations of malachite green: a triphenylmethane dye.

J Phys Chem A

Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.

Published: June 2015

Malachite green is a typical triphenylmethane dye widely used in fundamental and industrial research; however, its excited-state relaxation dynamics remains elusive. In this work we simulate its photodynamics from the S2 and S1 states using the fewest-switches surface-hopping scheme. In the S2 photodynamics, the system first relaxes to the S2 minimum, which immediately hops to the S1 state via an S2/S1 conical intersection. In the S1 state, 90% trajectories evolve into a structurally symmetric S1 minimum; the remaining ones proceed toward two propeller-like S1 minima. Two kinds of S1 minima then decay to the S0 state via the S1/S0 conical intersections. The S1 photodynamics is overall similar to the S1 excited-state dynamics as a result of the ultrafast S2 → S1 internal conversion in the S2 photodynamics, but the weights of the trajectories that decay to the S0 state via three different S1/S0 conical intersections are variational. Moreover, the S2 relaxation dynamics mainly happens in a concerted synchronous rotation of three phenyl rings. In comparison, in the S1 relaxation dynamics, the rotations of two aminophenyl rings can proceed in the same and opposite directions. In certain trajectories, only the rotation of an aminophenyl ring is active. On the basis of the results, the S2 and S1 excited-state lifetimes of malachite green in vacuo are calculated to be 424 fs and 1.2 ps, respectively. The present work provides important mechanistic insights for similar triphenylmethane dyes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.5b02549DOI Listing

Publication Analysis

Top Keywords

malachite green
12
relaxation dynamics
12
triphenylmethane dye
8
decay state
8
s1/s0 conical
8
conical intersections
8
surface-hopping dynamics
4
dynamics simulations
4
simulations malachite
4
green triphenylmethane
4

Similar Publications

Malachite green (MG) is used as a dye for materials such as wood, cotton, and nylon, and is used in aquaculture to prevent fungal and protozoan diseases. However, it is highly toxic, with carcinogenic, mutagenic, and teratogenic properties, resulting in bans worldwide. Despite this, MG is still frequently used in many countries due to its efficacy and economy.

View Article and Find Full Text PDF

Malachite Green (MG) is an antibiotic with antifungal activity, which is illegal to use in agriculture due to its mutagenic and teratogenic properties. Several scientific papers have been published on MG in fish. Therefore, an attempt was made to determine the meta-analysis concentration of MG in fish based on countries and types of fish subgroups, as well as the health risks of consumers, using the Monte Carlo simulation (MCS) model.

View Article and Find Full Text PDF

Removal of Malachite Green Dye from Aqueous Solution by a Novel Activated Carbon Prepared from Baobab Seeds Using Chemical Activation Method.

Molecules

January 2025

Department of Environment and Agricultural Natural Resources, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia.

Two activated carbons were synthesized from baobab seeds (BSs) using two activators, sulfuric acid (BS-AAC) and sodium hydroxide (BS-BAC), for dye removal from aqueous solutions. Malachite green (MG) was used as a model dye. SEM, FTIR, TGA, and surface area were used to characterize the feedstock and synthesis activated carbons.

View Article and Find Full Text PDF

Capybaras (Hydrochoerus hydrochaeris) are hosts for several parasites of public health importance, including Cryptosporidium spp. Therefore, this study aimed to perform the molecular characterization of Cryptosporidium spp. in fecal samples from capybaras inhabiting urban areas.

View Article and Find Full Text PDF

Although various biochars from different biomass materials have been developed to remediate dye-contaminated environments, the removal capabilities of pristine biochar for dyes urgently require further enhancement due to insufficient surface adsorption sites. To introduce more adsorption sites, this work proposes a simple approach to fabricate coconut shell biochar (CSB) based adsorbent by anchoring zeolitic imidazolate framework-8 (ZIF-8) via the active sites provided by polydopamine (PDA)-coated CSB. The nucleation sites provided by the PDA layer promote the dispersion of ZIF-8 on the surface of CSB, resulting in sufficient adsorption sites for removing malachite green (MG) and rhodamine B (RB) from wastewater.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!