A reinvestigation of the treatment of [Fe(N2)(PP)2] (PP = depe, dmpe) with acid revealed no ammonium formation. Instead, rapid protonation at the metal center to give hydride complexes was observed. Treatment of [Fe(N2)(dmpe)2] with methylating agents such as methyl triflate or methyl tosylate resulted in methylation of the metal center to afford [FeMe(N2)(dmpe)2](+). Treatment of [Fe(N2)(dmpe)2] with trimethylsilyl triflate, however, resulted in reaction at dinitrogen affording NH4(+) on subsequent treatment with acid. The side-on bound hydrazine complex [Fe(N2H4)(dmpe)2](2+) and bis(ammonia) complex [Fe(NH3)2(dmpe)2](2+) were identified by (15)N NMR spectroscopy as other species formed in the reaction mixture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.5b00211 | DOI Listing |
Nat Mater
January 2025
Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
Machine learning algorithms have proven to be effective for essential quantum computation tasks such as quantum error correction and quantum control. Efficient hardware implementation of these algorithms at cryogenic temperatures is essential. Here we utilize magnetic topological insulators as memristors (termed magnetic topological memristors) and introduce a cryogenic in-memory computing scheme based on the coexistence of a chiral edge state and a topological surface state.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, 226-8501, Japan.
Atomically flat two-dimensional networks of boron are attracting attention as post-graphene materials. An introduction of cations between the boron atomic layers can exhibit unique electronic functions that are not achieved by neutral graphene or its derivatives. In the present study, we propose a synthesis strategy for ion-laminated boron layered materials in a solution phase, which enables the preparation of analogs by changing the alkali-metal species.
View Article and Find Full Text PDFNat Commun
January 2025
Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, P. R. China.
The unsatisfactory ionic conductivity of solid polymer electrolytes hinders their practical use as substitutes for liquid electrolytes to address safety concerns. Although various plasticizers have been introduced to improve lithium-ion conduction kinetics, the lack of microenvironment understanding impedes the rational design of high-performance polymer electrolytes. Here, we design a class of Hofmann complexes that offer continuous two-dimensional lithium-ion conduction channels with functional ligands, creating highly conductive electrolytes.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shanghai Jiao Tong University, Frontiers Science Center for Transformative Molecules, 800 Dongchuan Road, 200240, Shanghai, CHINA.
Along with the renaissance of radical chemistry, the past decade has witnessed rapid development in radical-mediated rearrangement reactions. A wide diversity of radical approaches harnessing functional-group migration (FGM) have been devised to enhance both synthetic efficiency and molecular complexity. However, the application of FGM reactions to construct stereogenic centers remains underexplored owing to the inherent challenges of asymmetric radical reactions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Shanghai JiaoTong University 800 Dongchuan Road, Shanghai 200240, P. R. China.
Solid polymer electrolytes (SPEs) with excellent ionic conductivity and a wide electrochemical stability window are critical for high-energy lithium metal batteries (LMBs). However, the widespread application of polymer electrolytes is severely limited by inadequate room-temperature ionic conductivity, sluggish interfacial charge transport, and uncontrolled reactions at the electrode/electrolyte interface. Herein, we present a uniform polymerized 1,3-dioxolane (PDOL) composite solid polymer electrolyte (PDOL-S/F-nano LiF CSE) that satisfies these requirements through the in situ catalytic polymerization effect of nano LiF on the polymerization of 1,3-dioxolane-based electrolytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!