One-Pot Synthesis of Mesoporous TiO₂ Micropheres and Its Application for High-Efficiency Dye-Sensitized Solar Cells.

ACS Appl Mater Interfaces

†Key Laboratory of Novel Thin-Film Solar Cells, Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China.

Published: May 2015

TiO2 microspheres are of great interest for a great deal of applications, especially in the solar cell field. Because of their unique microstructure and light-scattering effect, TiO2 microsphere-based solar cells often exhibit superior photovoltaic performance. Hence, exploring new suitable TiO2 microspheres for high-efficiency solar cells is essential. In this work, we demonstrate a facile one-pot solvothermal approach for synthesis of TiO2 microspheres using acetone as solvent. The as-prepared TiO2 microspheres are composed of densely interconnected nanocrystals and possess a high specific surface area up to 138.47 m(2) g(-1). As the photoanode, the TiO2 microsphere-based DSSC gives higher dye loading and light adsorption ability as well as longer electron lifetime, resulting in higher short-circuit current value and superior power conversion efficiency (PCE) compared with Dyesol 18 nm TiO2 nanoparticle paste. Finally, the TiO2 microsphere-based DSSC were optimized by adding a TiO2 nanocrystal underlayer and TiCl4 post-treatment, giving a high PCE of 10.32%.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5b02195DOI Listing

Publication Analysis

Top Keywords

tio2 microspheres
16
solar cells
12
tio2 microsphere-based
12
tio2
9
microsphere-based dssc
8
one-pot synthesis
4
synthesis mesoporous
4
mesoporous tio₂
4
tio₂ micropheres
4
micropheres application
4

Similar Publications

Nonporous TiO@C microsphere with a highly integrated structure for high volumetric lithium storage and enhance initial coulombic efficiency.

Sci Rep

December 2024

Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang University of Science and Technology, Shouguang, 262700, People's Republic of China.

To enhance the volumetric energy density and initial coulombic efficiency (ICE) of titanium oxide (TiO) as anode electrode material for lithium-ion batteries (LIB), this study employed a surface-confined in-situ inter-growth mechanism to prepare a TiO embedded carbon microsphere composite. The results revealed that the composite exhibited a highly integrated structure of TiO with oxygen vacancies and carbon, along with an exceptionally small specific surface area of 11.52 m/g.

View Article and Find Full Text PDF

Green Pesticide High Activity Based on TiO Nanosuspension Incorporated Silver Microspheres Against .

Indian J Microbiol

December 2024

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo, Kendari, 93232 Southeast Sulawesi Indonesia.

Cocoa pod production has experienced a significant decline due to attacks by the () fungus, which is the main cause of cocoa pod rot. To overcome this problem, Titanium dioxide (TiO) was chosen because of its potential as an antifungal, and its activity can be increased by adding silver nanoparticles (AgNPs). This research aims to determine the antifungal properties of TiO-Ag nanosuspension on the growth of under exposure to UV, Visible and without irradiation.

View Article and Find Full Text PDF

Layer-by-Layer Deposition of Hollow TiO Spheres with Enhanced Photoelectric Conversion Efficiency for Dye-Sensitized Solar Cell Applications.

Nanomaterials (Basel)

November 2024

Department of Chemistry, College of Natural Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea.

Fabricating photoanodes with a strong light-scattering effect can improve the photoconversion efficiency of dye-sensitized solar cells (DSSCs). In this work, a facile microwave hydrothermal process was developed to prepare Au@TiO core-shell nanostructures, and then the Au core was removed by etching, resulting in hollow TiO. Morphological characterizations such as field emission scanning and transmission electron microscopy measurements have been used for the successful formation of core-shell and hollow TiO nanostructures.

View Article and Find Full Text PDF

Synthetic Janus micro/nanomotors can efficiently convert ambient energy into asymmetrical self-propulsive force, overcoming random thermal fluctuations and enabling autonomous migration. Further modifications to the motors can equip them with different functional modules to meet different needs. However, developing a versatile and high-yield fabrication method for multifunctional Janus micromotors remains challenging.

View Article and Find Full Text PDF

Volatile Organic Compounds (VOCs) are highly harmful to human beings and other organisms, and thus the elimination of VOCs is extremely urgent. Here, La-Si co-doped TiO microsphere photocatalysts, which were prepared by a hydrothermal method, exhibited high photocatalytic activity in the decomposition of formaldehyde compared with TiO. The improved activity can be attributed to the promoted separation efficiency and density of the charge carriers, as verified by the electrochemical results in combination with density functional theory calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!