Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires (CuO/CNF) as anodes for lithium ion batteries were prepared by coating the Cu2(NO3)(OH)3 on the surface of conductive and elastic CNF via electrophoretic deposition (EPD), followed by thermal treatment in air. The CuO shell stacked with nanoparticles grows radially toward the CNF core, which forms hierarchically mesoporous three-dimensional (3D) coaxial shell-core structure with abundant inner spaces in nanoparticle-stacked CuO shell. The CuO shells with abundant inner spaces on the surface of CNF and high conductivity of 1D CNF increase mainly electrochemical rate capability. The CNF core with elasticity plays an important role in strongly suppressing radial volume expansion by inelastic CuO shell by offering the buffering effect. The CuO/CNF nanowires deliver an initial capacity of 1150 mAh g(-1) at 100 mA g(-1) and maintain a high reversible capacity of 772 mAh g(-1) without showing obvious decay after 50 cycles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4421830 | PMC |
http://dx.doi.org/10.1038/srep09754 | DOI Listing |
Inorg Chem
December 2024
Textile Pollution Controlling Engineering Center of Ministry of Ecology and Environment, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
Carbon capture and storage (CCS) from dilute sources is an important strategy for stabilizing the concentration of atmospheric carbon dioxide and global temperature. However, the adsorption process is extremely challenging due to the sluggish diffusion rate of dilute CO. Herein, -phthalic acid (PTA)-derived hierarchical porous activated carbon (PTA-C) with abundant micro- and mesopores was successfully prepared for dilute CO (2 vol %) capture at ambient conditions.
View Article and Find Full Text PDFGels
December 2024
Department of Chemical and Pharmaceutical Engineering, Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047 Moscow, Russia.
Currently, materials with specific, strictly defined functional properties are becoming increasingly important. A promising strategy for achieving these properties involves developing methods that facilitate the formation of hierarchical porous materials that combine micro-, meso-, and macropores in their structure. Macropores facilitate effective mass transfer of substances to the meso- and micropores, where further adsorption or reaction processes can occur.
View Article and Find Full Text PDFNanomicro Lett
December 2024
Department of Chemistry and Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, People's Republic of China.
Chloroform and other volatile organic pollutants have garnered widespread attention from the public and researchers, because of their potential harm to the respiratory system, nervous system, skin, and eyes. However, research on chloroform vapor sensing is still in its early stages, primarily due to the lack of specific recognition motif. Here we report a mesoporous photonic crystal sensor incorporating carbon dots-based nanoreceptor (HMSS@CDs-PCs) for enhanced chloroform sensing.
View Article and Find Full Text PDFSmall
December 2024
State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
Organic anode materials have been recognized as promising candidates for low-cost and sustainable lithium-ion batteries (LIBs), which however suffer from the inferior cycling stability and low conductivity with unsatisfactory LIBs performance. Herein, two conjugated phthalocyanine-based covalent organic frameworks (COFs), namely CoPc-Ph-COF and CoPc-3Ph-COF, are synthesized by the nucleophilic substitution reaction of hexafluorophthalocyanine cobalt (II) (CoPcF) with 1,2,4,5-tetrahydroxybenzene and 9,10-dimethyl-2,3,6,7-tetrahydroxyanthracene, respectively. Powder X-ray diffraction and electron microscopy analysis reveal the crystalline porous structure of both COFs with a pore size of 1.
View Article and Find Full Text PDFSmall
December 2024
Université de Lorraine, CNRS, IJL, Epinal, F-88000, France.
The rational design of metal-nitrogen-doped carbons (M-N-C) from available and cost-effective sources featuring high electrocatalytic performance and stability is attractive for the development of viable low-temperature fuel cells. Herein, mimosa tannin, an abundant polyphenol easily extracted from the Mimosa plant, is used as a natural carbon source to produce a tannin-Fe(III) coordination complex. This process is assisted by Pluronic F127, which acts as both a surfactant and a promoter of Fe-N active sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!