Previous research suggests that independent variation of vocal loudness and glottal configuration (type and degree of vocal fold adduction) does not occur in untrained speech production. This study investigated whether these factors can be varied independently in trained singing and how subglottal pressure is related to average glottal airflow, voice source properties, and sound level under these conditions. A classically trained baritone produced sustained phonations on the endoscopic vowel [i:] at pitch D4 (approximately 294 Hz), exclusively varying either (a) vocal register; (b) phonation type (from "breathy" to "pressed" via cartilaginous adduction); or (c) vocal loudness, while keeping the others constant. Phonation was documented by simultaneous recording of videokymographic, electroglottographic, airflow and voice source data, and by percutaneous measurement of relative subglottal pressure. Register shifts were clearly marked in the electroglottographic wavegram display. Compared with chest register, falsetto was produced with greater pulse amplitude of the glottal flow, H1-H2, mean airflow, and with lower maximum flow declination rate (MFDR), subglottal pressure, and sound pressure. Shifts of phonation type (breathy/flow/neutral/pressed) induced comparable systematic changes. Increase of vocal loudness resulted in increased subglottal pressure, average flow, sound pressure, MFDR, glottal flow pulse amplitude, and H1-H2. When changing either vocal register or phonation type, subglottal pressure and mean airflow showed an inverse relationship, that is, variation of glottal flow resistance. The direct relation between subglottal pressure and airflow when varying only vocal loudness demonstrated independent control of vocal loudness and glottal configuration. Achieving such independent control of phonatory control parameters would be an important target in vocal pedagogy and in voice therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jvoice.2014.08.009 | DOI Listing |
J Acoust Soc Am
December 2024
Department of Head and Neck Surgery, University of California Los Angeles, Los Angeles, California 90095-1794, USA.
Previous studies of laryngeal and respiratory control of the voice source often focus on main effects of individual control parameters but not their interactions. The goal of this study is to systematically identify important interaction effects in laryngeal and respiratory control of the voice source and vocal fold contact pressure in a three-dimensional voice production model. Computational simulations were performed with parametric variations in vocal fold geometry, stiffness, prephonatory glottal gap, and subglottal pressure.
View Article and Find Full Text PDFFront Physiol
November 2024
Department of Otorhinolaryngology, Medical School, Division of Phoniatrics and Pediatric Audiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Head and Neck Surgery, University Hospital Erlangen, Erlangen, Waldstrasse, Germany.
Paediatr Anaesth
February 2025
Research and Development, Acute Care & Monitoring, Medtronic, Athlone, Ireland.
J Voice
October 2024
Center for Laryngeal Surgery and Voice Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts; Speech and Hearing Bioscience and Technology, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts; MGH Institute of Health Professions, Boston, Massachusetts.
Objective: Phonotrauma has been hypothesized to be associated with prolonged and/or accumulated biomechanical stress on vocal fold tissue. This hypothesis can be tested using ambulatory monitoring of vocal fold dissipated power, which requires a reliable method for its noninvasive estimation during the activity of daily living. The first aim of this study was to show that a laboratory-based estimate of vocal fold dissipated power computed from intraoral pressure (IOP) has significant discriminative power in individuals with phonotraumatic vocal hyperfunction (PVH).
View Article and Find Full Text PDFBMC Anesthesiol
October 2024
Department of Anesthesia, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!