Phacoemulsification, a common treatment for cataract, is accompanied by cell damage at the corneal endothelium. Thermal exposure during treatment has been considered a reason for this damage, but a thorough experimental and theoretical assessment of the local temperature distribution inside the eye had not yet been conducted. Measurements in porcine eyes and a finite-element simulation enabled such an assessment and localized the highest temperature rise very close to the probe. The results described in this study indicate that a distance of 1 mm between the probe and the endothelium should be maintained during treatment as a safety margin, especially when fluid flow is blocked. The highest measured temperature rise with surgically reasonable system settings and unblocked fluid flow was 1.11°C. The finite-element simulation described here is able to calculate the temperature rise at the endothelium and could serve as a tool for comparing arbitrary surgical situations with respect to thermal exposure of the endothelium.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultrasmedbio.2015.03.028DOI Listing

Publication Analysis

Top Keywords

temperature rise
12
local temperature
8
temperature distribution
8
porcine eyes
8
finite-element simulation
8
fluid flow
8
temperature
5
experimental numerical
4
numerical determination
4
determination local
4

Similar Publications

Heat-stress-induced oxidative and inflammatory responses were important factors contributing to chicken intestinal damage. The purpose of this study was based on the antioxidant and anti-inflammatory activities of Physalis Calyx seu Fructus (Jin Deng Long, JDL) to investigate its efficacy and mechanism in relieving chicken heat stress damage. Primary chicken embryo duodenum cells and 90 30-day-old specific-pathogen-free chicken were randomly divided into control and JDL groups to establish heat stress models and .

View Article and Find Full Text PDF

Background: We aimed to evaluate and compare the rise in the temperature for the safety of the kidney parenchyma on firing the Holmium: Yttrium Aluminium Garnet laser and the Thulium Fiber Laser during laser lithotripsy in humans.

Method: We included 30 pre-stented patients with renal calculi undergoing Retrograde intra-renal surgery. They were randomized into two groups - 15 patients underwent holmium laser lithotripsy and 15 patients underwent TFL laser lithotripsy.

View Article and Find Full Text PDF

Objective: We aimed to evaluate and compare the rise in the temperature for the safety of the ureter and kidney parenchyma when firing the holmium laser and the thulium fiber laser (TFL).

Methods: We performed a laboratory experiment to measure the rise in temperature upon firing holmium laser and a TFL in a 10 cm3 transparent test tube in an outdoor environment and then in a container with normal saline.

Results: In a 10 cc test tube with static water at 25°C, the rise in temperature with holmium and TFL depends on the firing time, keeping power constant.

View Article and Find Full Text PDF

Microwave-assisted evaporation technology is widely used today, but its molecular mechanism is not fully understood. To investigate the molecular mechanism of the influence of microwave electric field direction on water evaporation, this paper designed experiments to measure the microwave energy required to evaporate each gram of water with electric field directions parallel and perpendicular to the water surface. The temperature rise curve of the water is controlled to be consistent in both cases, and the temperature distribution of the water is made uniform by stirring.

View Article and Find Full Text PDF

SiO-Mediated Hydrothermal Synthesis of Spiroffite-Type CoTeO.

Inorg Chem

January 2025

Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States.

The hydrothermal synthesis of novel materials typically relies on both knowledge of the redox activities of all cations present in the reaction solution and a small toolset of so-called mineralizers to tune the solution's overall chemical potential. Upon the use of a less conventional mineralizer species, SiO, we show the stabilization of spiroffite-type CoTeO under less forceful hydrothermal conditions than those in previous reports. When synthesized in the presence of both SiO and each respective alkali carbonate as a secondary mineralizer, silicon substitution in place of tellurium in the host structure becomes apparent, and the corresponding disorder introduced gives rise to enhanced low-temperature ferromagnetism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!