Caspases are a group of proteolytic enzymes involved in the co-ordination of cellular processes, including cellular homeostasis, inflammation and apoptosis. Altered activity of caspases, particularly caspase-1, has been implicated in the development of intestinal diseases, such as inflammatory bowel disease (IBD) and colorectal cancer (CRC). However, the involvement of two related inflammatory caspase members, caspases-4 and -5, during intestinal homeostasis and disease has not yet been established. This study demonstrates that caspases-4 and -5 are involved in IBD-associated intestinal inflammation. Furthermore, we found a clear correlation between stromal caspase-4 and -5 expression levels, inflammation and disease activity in ulcerative colitis patients. Deregulated intestinal inflammation in IBD patients is associated with an increased risk of developing CRC. We found robust expression of caspases-4 and -5 within intestinal epithelial cells, exclusively within neoplastic tissue, of colorectal tumours. An examination of adjacent normal, inflamed and tumour tissue from patients with colitis-associated CRC confirmed that stromal expression of caspases-4 and -5 is increased in inflamed and dysplastic tissue, while epithelial expression is restricted to neoplastic tissue. In addition to identifying caspases-4 and -5 as potential targets for limiting intestinal inflammation, this study has identified epithelial-expressed caspases-4 and -5 as biomarkers with diagnostic and therapeutic potential in CRC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469154PMC
http://dx.doi.org/10.1111/cei.12617DOI Listing

Publication Analysis

Top Keywords

expression caspases-4
12
intestinal inflammation
12
inflammatory bowel
8
bowel disease
8
colorectal cancer
8
diagnostic therapeutic
8
therapeutic potential
8
caspases-4 intestinal
8
neoplastic tissue
8
caspases-4
7

Similar Publications

Lipopolysaccharide (LPS) mediated caspases-4 (humans) and caspase-11 (rodent) (caspase-4/11) signaling can cause maturation of inflammatory cytokine IL-1β and cellular pyroptosis in the macrophages through guanylate-binding proteins (GBPs). However, how caspase-4/11s bind with GBPs together to activate caspase-4/11 by LPS remains elusive. We here found that BA derivatives from gut microbiota can regulate sensitivity of macrophages to LPS and Gram-negative bacteria through .

View Article and Find Full Text PDF

Caspase-11 is the murine homologue of human caspases-4 and -5 and is involved in mediating the inflammatory response. However, its functions are often confused and misinterpreted with the more important and better described caspase-1. Therefore, this study focused exclusively on the specific roles of caspase-11, both in cartilage formation and in the inflammatory environment.

View Article and Find Full Text PDF

HMGB1 is a critical molecule in the pathogenesis of Gram-negative sepsis.

J Intensive Med

July 2022

Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, United States of America.

Gram-negative sepsis is a severe clinical syndrome associated with significant morbidity and mortality. Lipopolysaccharide (LPS), expressed on Gram-negative bacteria, is a potent pro-inflammatory toxin that induces inflammation and coagulation via two separate receptor systems. One is Toll-like receptor 4 (TLR4), expressed on cell surfaces and in endosomes, and the other is the cytosolic receptor caspase-11 (caspases-4 and -5 in humans).

View Article and Find Full Text PDF

Angiotensin II can trigger HSC-LX2 pyroptosis through both classical and non-classical pathways.

Life Sci

October 2022

School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China. Electronic address:

Background: Current evidence suggests that liver fibrosis is reversible even at late stages. Pyroptosis is reportedly regulated by classical and non-classical pathways and is also involved in the activation of the human hepatic stellate cell line LX2. This study sought to identify regulatory pathways that pyroptosis of HSC during AngII-ROS-induced HSC activation and provides novel insights for anti-fibrosis therapy by targeting HSC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!