The succession of microbial community structure and function is a central ecological topic, as microbes drive the Earth's biogeochemical cycles. To elucidate the response and mechanistic underpinnings of soil microbial community structure and metabolic potential relevant to natural forest succession, we compared soil microbial communities from three adjacent natural forests: a coniferous forest (CF), a mixed broadleaf forest (MBF) and a deciduous broadleaf forest (DBF) on Shennongjia Mountain in central China. In contrary to plant communities, the microbial taxonomic diversity of the DBF was significantly (P < 0.05) higher than those of CF and MBF, rendering their microbial community compositions markedly different. Consistently, microbial functional diversity was also highest in the DBF. Furthermore, a network analysis of microbial carbon and nitrogen cycling genes showed the network for the DBF samples was relatively large and tight, revealing strong couplings between microbes. Soil temperature, reflective of climate regimes, was important in shaping microbial communities at both taxonomic and functional gene levels. As a first glimpse of both the taxonomic and functional compositions of soil microbial communities, our results suggest that microbial community structure and function potentials will be altered by future environmental changes, which have implications for forest succession.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4421864 | PMC |
http://dx.doi.org/10.1038/srep10007 | DOI Listing |
Front Microbiol
January 2025
Yunnan Academy of Tobacco Science, Kunming, China.
The effects of rhizosphere microorganisms on plant growth and the associated mechanisms are a focus of current research, but the effects of exogenous combined inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on seedling growth and the associated rhizosphere microecological mechanisms have been little reported. In this study, a greenhouse pot experiment was used to study the effects of single or double inoculation with AM fungi () and two PGPR ( sp., sp.
View Article and Find Full Text PDFFront Microbiol
January 2025
College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China.
The imbalanced soil nutrient status caused by the long-term monoculture of flue-cured tobacco are a concern. The tobacco-maize relay intercropping, widely used in Yunnan, may improve soil nutrients by enhancing the soil microbial community, but this remains unexplored. This study employed high-throughput sequencing technology to examine soil microbial diversity under tobacco monoculture and tobacco-maize relay intercropping, using the varieties Hongda and K326, respectively.
View Article and Find Full Text PDFFront Microbiol
January 2025
School of Life Sciences, Hebei University, Baoding, China.
Introduction: Exploring the interactions between dark septate endophytes (DSE) in plant roots across diverse heavy metal habitats-considering host plants, site characteristics, and microbial communities-provides insights into the distribution patterns of DSE in metal-rich environments and their mechanisms for developing heavy metal resistance.
Methods: This study collected samples of three common plant species (, PA, , SV, and , AA) and their corresponding soil samples from three heavy metal-contaminated sites: Baiyang Lake, BY, Fengfeng mining area, FF, and Huangdao, HD. Utilizing high-throughput sequencing and physicochemical analysis methods, the biological and abiotic factors affecting DSE colonization and distribution in the roots were investigated.
Front Plant Sci
January 2025
College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China.
In this study, the improvement effect of different organic substances on compacted cohesive soil in southern Xinjiang was discussed, with emphasis on the influence of different organic substances on soil chemical properties and microorganisms, so as to determine the best carbon source input and provide theoretical support for the rational utilization of organic materials in southern Xinjiang. Field experiments were conducted to evaluate the effects of farm fertilizer, biochar, commercial organic fertilizer, microbial fertilizer and mineral potassium humate on physical and chemical properties of viscous soil, agronomic properties and yield of cotton, with three gradients for each organic fertilizer. The results showed that: (1) all organic fertilizers improved soil structure, among which farm fertilizer significantly reduced soil bulk density and salinity, increased soil organic matter, total nitrogen and available nutrients, and thus increased cotton height, stem diameter and yield.
View Article and Find Full Text PDFMethodsX
June 2025
CUMT-UCASAL Joint Research Center for Biomining and Soil Ecological Restoration, State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology, Xuzhou, Jiangsu province, 221116, PR China.
A critical challenge in ecological restoration of open-pit mine dumps in cold regions with limited topsoil resources is how to rapidly mitigate the plant growth-inhibitory effects of mineral black clay, thereby converting it into arable soil. Leveraging the high degradation capacity of coal seam-associated microorganisms on fossil carbon materials, combined with soil conditioning techniques, this study developed a microbial-based approach for modifying black clay. Seed germination experiments informed both laboratory and field trial designs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!