Systematic Global Analysis of Genes Encoding Protein Phosphatases in Aspergillus fumigatus.

G3 (Bethesda)

Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 13083-970 Ribeirão Preto, Brazil National Laboratory of Science and Technology of Bioethanol (CTBE), 13083-970 Campinas, Brazil

Published: May 2015

Aspergillus fumigatus is a fungal pathogen that causes several invasive and noninvasive diseases named aspergillosis. This disease is generally regarded as multifactorial, considering that several pathogenicity determinants are present during the establishment of this illness. It is necessary to obtain an increased knowledge of how, and which, A. fumigatus signal transduction pathways are engaged in the regulation of these processes. Protein phosphatases are essential to several signal transduction pathways. We identified 32 phosphatase catalytic subunit-encoding genes in A. fumigatus, of which we were able to construct 24 viable deletion mutants. The role of nine phosphatase mutants in the HOG (high osmolarity glycerol response) pathway was evaluated by measuring phosphorylation of the p38 MAPK (SakA) and expression of osmo-dependent genes. We were also able to identify 11 phosphatases involved in iron assimilation, six that are related to gliotoxin resistance, and three implicated in gliotoxin production. These results present the creation of a fundamental resource for the study of signaling in A. fumigatus and its implications in the regulation of pathogenicity determinants and virulence in this important pathogen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4502386PMC
http://dx.doi.org/10.1534/g3.115.016766DOI Listing

Publication Analysis

Top Keywords

protein phosphatases
8
aspergillus fumigatus
8
pathogenicity determinants
8
signal transduction
8
transduction pathways
8
fumigatus
5
systematic global
4
global analysis
4
analysis genes
4
genes encoding
4

Similar Publications

Nuclear speckles are membraneless organelles that associate with active transcription sites and participate in post-transcriptional mRNA processing. During the cell cycle, nuclear speckles dissolve following phosphorylation of their protein components. Here, we identify the PP1 family as the phosphatases that counteract kinase-mediated dissolution.

View Article and Find Full Text PDF

Studies have noted the connection between Mycobacterium avium subspecies paratuberculosis (MAP) and autoimmunity. MAP is an intracellular pathogen that infects and multiplies in macrophages. To overcome the hostile environment elicited by the macrophage, MAP secretes a battery of virulence factors to neutralize the toxic effects of the macrophage.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a neurodegenerative disease that causes progressive cognitive decline over age 65. Individuals suffering from this disease suffer memory loss, and histological examination of the brains. Okadaic acid (OA), is a potent and selective inhibitor of protein phosphatases 1 and 2A.

View Article and Find Full Text PDF

GPSD: a hybrid learning framework for the prediction of phosphatase-specific dephosphorylation sites.

Brief Bioinform

November 2024

Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China.

Protein phosphorylation is dynamically and reversibly regulated by protein kinases and protein phosphatases, and plays an essential role in orchestrating a wide range of biological processes. Although a number of tools have been developed for predicting kinase-specific phosphorylation sites (p-sites), computational prediction of phosphatase-specific dephosphorylation sites remains to be a great challenge. In this study, we manually curated 4393 experimentally identified site-specific phosphatase-substrate relationships for 3463 dephosphorylation sites occurring on phosphoserine, phosphothreonine, and/or phosphotyrosine residues, from the literature and public databases.

View Article and Find Full Text PDF

A monoamine oxidase B inhibitor altered gene expression of catalytically active dual-specificity phosphatases in human oral gingival keratinocytes.

Eur Rev Med Pharmacol Sci

December 2024

Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada.

Objective: Monoamine oxidase (MAO) inhibitors reduce inflammation in a number of in vitro and in vivo models. This finding led to the development of a novel MAO-B selective inhibitor (RG0216) designed to reduce blood-brain barrier penetration. To elucidate RG0216's regulatory role in inflammation-relevant signaling pathways, we employed a transcriptome analytic approach to identify genes that are differentially regulated by RG0216 and then globally identified which inflammation-relevant biological signaling pathways were altered by this drug.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!