AI Article Synopsis

  • A set of new chromium(III) complexes using a specific tridentate ligand were developed and characterized for their ability to catalyze ethylene polymerization/oligomerization.
  • X-ray analyses confirmed that these complexes featured a specific geometric arrangement around the chromium center, crucial for their catalytic activity.
  • The effectiveness of these catalysts varied significantly based on the chemical groups attached to the ligands and the conditions under which the reactions were conducted.

Article Abstract

A set of new chromium(III) [Cr(III)] complexes based on the tridentate ligand HC(Pz)2Py (Pz = pyrazole; Py = pyridine) and its derivatives were prepared, characterized, and evaluated for ethylene polymerization/oligomerization. X-ray single-crystal analyses of the Cr(III) complexes showed tridentate coordination on the fac-octahedral Cr sphere. Upon activation with methylaluminoxane (MAO), the precatalysts and the ligands L1-L3 mixed in situ with Cr(acac)3 were highly active and generally produced polyethylene as a major product. Their catalytic performances were markedly affected by the substituents on the methine carbon atom of the ligands and reaction conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5dt00855gDOI Listing

Publication Analysis

Top Keywords

highly active
8
complexes based
8
based tridentate
8
active chromiumiii
4
chromiumiii complexes
4
tridentate pyrazolyl
4
pyrazolyl pyridyl
4
pyridyl ligands
4
ligands ethylene
4
ethylene polymerization
4

Similar Publications

Collaborative management partnerships (CMPs) between state wildlife authorities and nonprofit conservation organizations to manage protected areas (PAs) have been used increasingly across Sub-Saharan Africa since the 2000s. They aim to attract funding, build capacity, and increase the environmental effectiveness of PAs. Our study documents the rise of CMPs, examines their current extent, and measures their effectiveness in protecting habitats.

View Article and Find Full Text PDF

Understanding structure-mechanical activity relationships (SMARs) in polymer mechanochemistry is essential for the rational design of mechanophores with desired properties, yet SMARs in noncovalent mechanical transformations remain relatively underexplored. In this study, we designed a subset of diarylethene mechanophores based on a lever-arm hypothesis and systematically investigated their mechanical activity toward a noncovalent-yet-chemical conversion of atropisomer stereochemistry. Results from Density functional theory (DFT) calculations, single-molecule force spectroscopy (SMFS) measurements, and ultrasonication experiments collectively support the lever-arm hypothesis and confirm the exceptional sensitivity of chemo-mechanical coupling in these atropisomers.

View Article and Find Full Text PDF

Micro/nanoscale 3D bioelectrodes gain increasing interest for electrophysiological recording of electroactive cells. Although 3D printing has shown promise to flexibly fabricate 3D bioelectronics compared with conventional microfabrication, relatively-low resolution limits the printed bioelectrode for high-quality signal monitoring. Here, a novel multi-material electrohydrodynamic printing (EHDP) strategy is proposed to fabricate bioelectronics with sub-microscale 3D gold pillars for in vitro electrophysiological recordings.

View Article and Find Full Text PDF

Covalent Grafting of Graphene Quantum Dots onto Stepped TiO-Mediated Electronic Modulation for Electrocatalytic Hydrogen Evolution.

Inorg Chem

January 2025

School of Chemistry and Chemical Engineering, and Institute for Innovative Materials and Energy, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou 225002, China.

The interaction between electrocatalytic active centers and their support is essential to the electrocatalytic performance, which could regulate the electronic structure of the metal centers but requires precise design. Herein, we report on covalent grafting of graphene quantum dots (GQDs) on stepped TiO as a support to anchoring cobalt phosphide nanoparticles (CoP/GQD/S-TiO) for electrocatalytic hydrogen evolution reaction (HER). The covalent ester bonds between GQDs and TiO endow enlarged anchoring sites to achieve highly dispersed electroactive CoP nanoparticles but, more importantly, provide an efficient electron-transfer pathway from TiO to GQDs which could regulate the electronic structure of CoP.

View Article and Find Full Text PDF

A new series of 13 ritonavir-like inhibitors of human drug-metabolizing CYP3A4 was rationally designed to study the R side-group and R end-group interplay when the R side-group is represented by phenyl. Spectral, functional, and structural characterization showed no improvement in the binding affinity and inhibitory potency of R/R-phenyl inhibitors upon elongation and/or fluorination of R-Boc (tert-butyloxycarbonyl) or its replacement with benzenesulfonyl. When R is pyridine, the impact of R-phenyl-to-indole/naphthalene substitution was multidirectional and highly dependent on side-group stereo configuration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!