Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The acid treatments of TiO2 nanopowder with HCI or H2SO4 solution increase the concentration of the hydroxyl group on TiO2 surfaces compared to bare TiO2, which acts as a Brønsted acid site. For the case of the HCl-treated TiO2, the dissociation of Brønsted acid (proton donor) sites on TiO2 leads to a drop in the pH levels of rhodamine B (RhB) dye solutions (leading to the protonation of the RhB molecule), which allows the physisorption of the uncharged carboxyl acid group on the positively charged TiO2 surface. The carboxyl acid group is believed to afford a more efficient charge injection from the Visible-light-excited RhB to the conduction band of TiO2 compared to the N-ethyl group, yielding a significantly enhanced photodegradation of RhB mainly via the N-de-ethylation pathway. For the case of the H2SO4-treated TiO2, although the dissociation of Brønsted acid sites on TiO2 is also achieved, its photoactivity is much lower than that of the HCl-treated TiO2. It seems that the presence of SO4(2-) on the H2SO4-treated TiO2 behaves as an *OH scavenger to prevent the photodegradation of the dye.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2014.9466 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!