In this research, tensile tests of cylindrical specimens of a mild steel are predicted via the finite element method, with emphasis on the fracture predictions of various damage models. An analytical model is introduced for this purpose. An iterative material identification procedure is used to obtain the flow stress, making it possible to exactly predict a tensile test up to the fracture point, in the engineering sense. A node-splitting technique is used to generate the cracks on the damaged elements. The damage models of McClintock, Rice-Tracey, Cockcroft-Latham, Freudenthal, Brozzo et al. and Oyane et al. are evaluated by comparing their predictions from the tensile test perspective.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2014.9472DOI Listing

Publication Analysis

Top Keywords

damage models
12
tensile test
12
finite element
8
evaluation damage
4
models finite
4
element prediction
4
prediction fracture
4
fracture cylindrical
4
tensile
4
cylindrical tensile
4

Similar Publications

Background: Methotrexate (MTX) is an agent used in the treatment of many neoplastic and non-neoplastic diseases and is known to cause oxidative damage in normal tissues. Curcumin (Cur) is a natural polyphenol compound with powerful antioxidant and antiapoptotic effects. In this study we investigate the effects of Cur on MTX-induced ovarian damage.

View Article and Find Full Text PDF

Biotic stresses such as fungal pathogens significantly affect global crop yields. Understanding of the plant-pathogen interactions during root infection, especially in monocot crops, remains limited compared to fungal colonizations of dicots. The infection process of several cereal crop root-damaging fungi and oomycetes is highly similar to root infections by the pathogen model Phytophthora palmivora.

View Article and Find Full Text PDF

Jie-Geng-Tang (JGT), composed of Platycodon grandiflorus (Jacq.) A. DC and Glycyrrhiza uralensis Fisch, is widely used in traditional Chinese medicine for its potential effects in preventing pulmonary fibrosis (PF).

View Article and Find Full Text PDF

Chemotherapy, a cornerstone of cancer treatment, is frequently marred by its hepatotoxic effects, which can significantly impede therapeutic efficacy. This systematic review meticulously evaluates the hepatoprotective properties of phytochemicals and plant extracts against chemotherapy-induced liver damage, primarily in experimental animal models. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, an exhaustive search was conducted across databases like SCOPUS, PubMed, and Web of Science, culminating in the inclusion of 61 pertinent studies.

View Article and Find Full Text PDF

Mitigation of depleted uranium-induced mitochondrial damage by ethylmalonic encephalopathy 1 protein via modulation of hydrogen sulfide and glutathione pathways.

Arch Toxicol

December 2024

State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.

Depleted uranium (DU) is a byproduct of uranium enrichment, which can cause heavy-metal toxicity and radiation toxicity as well as serious damage to the kidneys. However, the mechanism of renal injury induced by DU is still unclear. This study aimed to explore the role of ethylmalonic encephalopathy 1 (ETHE1) in DU-induced mitochondrial dysfunction and elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!