High adhesive superhydrophobic polymer pillar surfaces with dispersed metallic crown-like micro structures were prepared by electroless plating on self-organized honeycomb patterned polymer films and peeling off the top layer of the metal covered honeycomb films. Thus obtained polymer pillar surfaces with metallic crown-like microstructures possessed conflicting properties of water repellency and adhesion. The adhesion property was tuned by number density of metallic crown-like microstructures which were adjusted by polymer concentration in a catalytic solution for electroless plating.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2014.9582 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, P. R. China.
Developing efficient and recyclable iodine adsorbents is crucial for addressing radioactive iodine pollution. An imidazole cation-bridged pillar[5]arene polymer (P5-P5I) was synthesized via a salt formation reaction. P5-P5I exhibited a high iodine vapor capture capacity of 2130.
View Article and Find Full Text PDFNat Commun
January 2025
Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark.
Knowledge about how and where proteins interact provides a pillar for cell biology. Protein proximity-labeling has emerged as an important tool to detect protein interactions. Biotin-related proximity labeling approaches are by far the most commonly used but may have labeling-related drawbacks.
View Article and Find Full Text PDFACS Macro Lett
January 2025
Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
As a special kind of supramolecular compound with many favorable properties, pillar[]arene-based supramolecular polymer networks (SPNs) show potential application in many fields. Although we have come a long way using pillar[]arene to prepare SPNs and construct a series of smart materials, it remains a challenge to enhance the mechanical strength of pillar[]arene-based SPNs. To address this issue, a new supramolecular regulation strategy was developed, which could precisely control the preparation of pillar[]arene-based SPN materials with excellent mechanical properties by adjusting the polymer network structures.
View Article and Find Full Text PDFChemistry
December 2024
Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
Two-dimensional (2D) polymer network monolayers with novel block architectures were fabricated via sequential copolymerization within a pillared-layer metal-organic framework (MOF) that served as the reaction template. The MOF provides a confined 2D nanospace, restricting the crosslinking copolymerization of vinyl monomers to two dimensions. Sequential crosslinking copolymerization of methyl methacrylate and styrene, regulated by the reversible addition-fragmentation chain transfer (RAFT) process, resulted in the formation of 2D block architectures with 'patchy' domains consisting of crosslinked poly(methyl methacrylate) and polystyrene segments.
View Article and Find Full Text PDFChem Asian J
December 2024
Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
A triphenylamine-containing π-conjugated pillar[5]arene luminescent small organic molecule has been synthesized via Suzuki-coupling reaction. This molecule can self-assemble to form linear supramolecular polymers in both solution and solid state. The molecule shows enhanced emission compared with parent pillar[5]arene in dilute solution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!