Human centromeres are specified by a stably inherited epigenetic mark that maintains centromere position and function through a two-step mechanism relying on self-templating centromeric chromatin assembled with the histone H3 variant CENP-A, followed by CENP-A-dependent nucleation of kinetochore assembly. Nevertheless, natural human centromeres are positioned within specific megabase chromosomal regions containing α-satellite DNA repeats, which contain binding sites for the DNA sequence-specific binding protein CENP-B. We now demonstrate that CENP-B directly binds both CENP-A's amino-terminal tail and CENP-C, a key nucleator of kinetochore assembly. DNA sequence-dependent binding of CENP-B within α-satellite repeats is required to stabilize optimal centromeric levels of CENP-C. Chromosomes bearing centromeres without bound CENP-B, including the human Y chromosome, are shown to mis-segregate in cells at rates several-fold higher than chromosomes with CENP-B-containing centromeres. These data demonstrate a DNA sequence-specific enhancement by CENP-B of the fidelity of epigenetically defined human centromere function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4421092 | PMC |
http://dx.doi.org/10.1016/j.devcel.2015.03.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!