DNA double strand breaks (DSB)s often require end processing prior to joining during their repair by non-homologous end joining (NHEJ). Although the yeast proteins, Pol4, a Pol X family DNA polymerase, and Rad27, a nuclease, participate in the end processing reactions of NHEJ, the mechanisms underlying the recruitment of these factors to DSBs are not known. Here we demonstrate that Nej1, a NHEJ factor that interacts with and modulates the activity of the NHEJ DNA ligase complex (Dnl4/Lif1), physically and functionally interacts with both Pol4 and Rad27. Notably, Nej1 and Dnl4/Lif1, which also interacts with both Pol4 and Rad27, independently recruit the end processing factors to in vivo DSBs via mechanisms that are additive rather than redundant. As was observed with Dnl4/Lif1, the activities of both Pol4 and Rad27 were enhanced by the interaction with Nej1. Furthermore, Nej1 increased the joining of incompatible DNA ends in reconstituted reactions containing Pol4, Rad27 and Dnl4/Lif1, indicating that the stimulatory activities of Nej1 and Dnl4/Lif1 are also additive. Together our results reveal novel roles for Nej1 in the recruitment of Pol4 and Rad27 to in vivo DSBs and the coordination of the end processing and ligation reactions of NHEJ.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5038981 | PMC |
http://dx.doi.org/10.1016/j.dnarep.2015.04.003 | DOI Listing |
DNA Repair (Amst)
July 2015
Department of Internal Medicine, University of New Mexico Cancer Center, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA. Electronic address:
DNA double strand breaks (DSB)s often require end processing prior to joining during their repair by non-homologous end joining (NHEJ). Although the yeast proteins, Pol4, a Pol X family DNA polymerase, and Rad27, a nuclease, participate in the end processing reactions of NHEJ, the mechanisms underlying the recruitment of these factors to DSBs are not known. Here we demonstrate that Nej1, a NHEJ factor that interacts with and modulates the activity of the NHEJ DNA ligase complex (Dnl4/Lif1), physically and functionally interacts with both Pol4 and Rad27.
View Article and Find Full Text PDFDNA Repair (Amst)
January 2008
Graduate Program in Cellular and Molecular Biology and Department of Pathology, University of Michigan Medical School, 2065 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, United States.
Nonhomologous end joining (NHEJ) directly rejoins DNA double-strand breaks (DSBs) when recombination is not possible. In Saccharomyces cerevisiae, the DNA polymerase Pol4 is required for gap filling when a short 3' overhang must prime DNA synthesis. Here, we examined further end variations to test specific hypotheses regarding Pol4 usage in NHEJ in vivo.
View Article and Find Full Text PDFGenetics
August 2007
Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA.
Microhomology-mediated end joining (MMEJ) joins DNA ends via short stretches [5-20 nucleotides (nt)] of direct repeat sequences, yielding deletions of intervening sequences. Non-homologous end joining (NHEJ) and single-strand annealing (SSA) are other error prone processes that anneal single-stranded DNA (ssDNA) via a few bases (<5 nt) or extensive direct repeat homologies (>20 nt). Although the genetic components involved in MMEJ are largely unknown, those in NHEJ and SSA are characterized in some detail.
View Article and Find Full Text PDFJ Biol Chem
November 2004
Molecular Medicine Graduate Program, Institute of Biotechnology, The University of Texas Health Sciences Center at San Antonio, San Antonio, Texas 78245, USA.
The repair of DNA double-strand breaks is critical for maintaining genetic stability. In the non-homologous end-joining pathway, DNA ends are brought together by end-bridging factors. However, most in vivo DNA double-strand breaks have terminal structures that cannot be directly ligated.
View Article and Find Full Text PDFDNA Repair (Amst)
April 2002
Department of Biology, College of St. Benedict/St. John's University, Collegeville, MN 56321-3000, USA.
The cellular role of the DNA polymerase encoded by the Saccharomyces cerevisiae POL4 gene is unclear. We have used an epistasis analysis to investigate whether the proteins encoded by the POL4 and RAD27 genes participate in alternative, non-redundant subpathways of DNA base excision repair (BER). We constructed strains in which the genes were deleted singly or in combination and have examined their sensitivity to DNA damaging agents as well as spontaneous mutation frequency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!