Drosophila melanogaster kinesin-14 Ncd cross-links parallel microtubules at the spindle poles and antiparallel microtubules within the spindle midzone to play roles in bipolar spindle assembly and proper chromosome distribution. As observed for Saccharomyces cerevisiae kinesin-14 Kar3Vik1 and Kar3Cik1, Ncd binds adjacent microtubule protofilaments in a novel microtubule binding configuration and uses an ATP-promoted powerstroke mechanism. The hypothesis tested here is that Kar3Vik1 and Kar3Cik1, as well as Ncd, use a common ATPase mechanism for force generation even though the microtubule interactions for both Ncd heads are modulated by nucleotide state. The presteady-state kinetics and computational modeling establish an ATPase mechanism for a powerstroke model of Ncd that is very similar to those determined for Kar3Vik1 and Kar3Cik1, although these heterodimers have one Kar3 catalytic motor domain and a Vik1/Cik1 partner motor homology domain whose interactions with microtubules are not modulated by nucleotide state but by strain. The results indicate that both Ncd motor heads bind the microtubule lattice; two ATP binding and hydrolysis events are required for each powerstroke; and a slow step occurs after microtubule collision and before the ATP-promoted powerstroke. Note that unlike conventional myosin-II or other processive molecular motors, Ncd requires two ATP turnovers rather than one for a single powerstroke-driven displacement or step. These results are significant because all metazoan kinesin-14s are homodimers, and the results presented show that despite their structural and functional differences, the heterodimeric and homodimeric kinesin-14s share a common evolutionary structural and mechanochemical mechanism for force generation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4443328 | PMC |
http://dx.doi.org/10.1073/pnas.1505531112 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!