https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=25941394&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 259413942015081920181113
1091-6490112202015May19Proceedings of the National Academy of Sciences of the United States of AmericaProc Natl Acad Sci U S ASignature properties of water: Their molecular electronic origins.634163466341-610.1073/pnas.1418982112Water challenges our fundamental understanding of emergent materials properties from a molecular perspective. It exhibits a uniquely rich phenomenology including dramatic variations in behavior over the wide temperature range of the liquid into water's crystalline phases and amorphous states. We show that many-body responses arising from water's electronic structure are essential mechanisms harnessed by the molecule to encode for the distinguishing features of its condensed states. We treat the complete set of these many-body responses nonperturbatively within a coarse-grained electronic structure derived exclusively from single-molecule properties. Such a "strong coupling" approach generates interaction terms of all symmetries to all orders, thereby enabling unique transferability to diverse local environments such as those encountered along the coexistence curve. The symmetries of local motifs that can potentially emerge are not known a priori. Consequently, electronic responses unfiltered by artificial truncation are then required to embody the terms that tip the balance to the correct set of structures. Therefore, our fully responsive molecular model produces, a simple, accurate, and intuitive picture of water's complexity and its molecular origin, predicting water's signature physical properties from ice, through liquid-vapor coexistence, to the critical point.SokhanVlad PVP0000-0002-0753-9741National Physical Laboratory, Teddington, Middlesex TW11 0LW, United Kingdom; vlad.sokhan@npl.co.uk.JonesAndrew PAPSchool of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom; and.CipciganFlaviu SFSSchool of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom; and.CrainJasonJNational Physical Laboratory, Teddington, Middlesex TW11 0LW, United Kingdom; School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom; and.MartynaGlenn JGJSchool of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom; and IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598.engJournal ArticleResearch Support, Non-U.S. Gov't20150504
United StatesProc Natl Acad Sci U S A75058760027-8424coarse-grained modelelectronic responsesintermolecular interactionsmany-body dispersionsubcritical waterThe authors declare no conflict of interest.
20155660201556602015566120151119ppublish25941394PMC444337910.1073/pnas.14189821121418982112Franks F, editor. Water: A Comprehensive Treatise. Vol 1–7 Plenum; New York: 1972–1982.Brock TD. Life at high temperatures. Evolutionary, ecological, and biochemical significance of organisms living in hot springs is discussed. Science. 1967;158(3804):1012–1019.4861476Rothschild LJ, Mancinelli RL. Life in extreme environments. Nature. 2001;409(6823):1092–1101.11234023Sharma A, et al. Microbial activity at gigapascal pressures. Science. 2002;295(5559):1514–1516.11859192Bernal JD, Fowler RH. A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J Chem Phys. 1933;1(8):515–548.Pauling L. 1970. General Chemistry (Freeman, San Francisco), 3rd ed.Gregory JK, Clary DC, Liu K, Brown MG, Saykally RJ. The water dipole moment in water clusters. Science. 1997;275(5301):814–817.9012344DiStasio RA, Jr, von Lilienfeld OA, Tkatchenko A. Collective many-body van der Waals interactions in molecular systems. Proc Natl Acad Sci USA. 2012;109(37):14791–14795.PMC344315522923693DiStasio RA, Jr, Gobre VV, Tkatchenko A. Many-body van der Waals interactions in molecules and condensed matter. J Phys Condens Matter. 2014;26(21):213202.24805055Stillinger FH, Rahman A. Improved simulation of liquid water by molecular dynamics. J Chem Phys. 1974;60(4):1545–1557.Errington JR, Debenedetti PG. Relationship between structural order and the anomalies of liquid water. Nature. 2001;409(6818):318–321.11201735Bukowski R, Szalewicz K, Groenenboom GC, van der Avoird A. Predictions of the properties of water from first principles. Science. 2007;315(5816):1249–1252.17332406Stone AJ. Water from first principles. Science. 2007;315(5816):1228–1229.17332399Mahoney MW, Jorgensen WL. Quantum, intramolecular flexibility, and polarizability effects on the reproduction of the density anomaly of liquid water by simple potential functions. J Chem Phys. 2001;115(23):10758–10768.Jorgensen WL, Tirado-Rives J. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc Natl Acad Sci USA. 2005;102(19):6665–6670.PMC110073815870211Horn HW, et al. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J Chem Phys. 2004;120(20):9665–9678.15267980Barker JA. Many-body interactions in rare gases. Mol Phys. 1986;57(4):755–760.10033754Reilly AM, Tkatchenko A. Role of dispersion interactions in the polymorphism and entropic stabilization of the aspirin crystal. Phys Rev Lett. 2014;113(5):055701.25126928Whitfield TW, Martyna GJ. Low variance energy estimators for systems of quantum Drude oscillators: Treating harmonic path integrals with large separations of time scales. J Chem Phys. 2007;126(7):074104.17328590Jones AP, Crain J, Sokhan VP, Whitfield TW, Martyna GJ. Quantum Drude oscillator model of atoms and molecules: Many-body polarization and dispersion interactions for atomistic simulation. Phys Rev B. 2013;87(14):144103.Jones A, Cipcigan F, Sokhan VP, Crain J, Martyna GJ. Electronically coarse-grained model for water. Phys Rev Lett. 2013;110(22):227801.23767748Wegner FJ. Corrections to scaling laws. Phys Rev B. 1972;5:4529–4536.Wagner W, Pruß A. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data. 2002;31(2):387–535.Mahoney MW, Jorgensen WL. A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J Chem Phys. 2000;112(23):8910–8922.Soper AK. The radial distribution functions of water as derived from radiation total scattering experiments: Is there anything we can say for sure? ISRN Phys Chem. 2013;2013:1–67.Skinner LB, et al. Benchmark oxygen-oxygen pair-distribution function of ambient water from x-ray diffraction measurements with a wide Q-range. J Chem Phys. 2013;138(7):074506.23445023Niu S, Tan ML, Ichiye T. The large quadrupole of water molecules. J Chem Phys. 2011;134(13):134501.PMC308186021476758Onsager L, Dupuis M. 1960. in Termodinamica dei processi irreversibili, Proceedings of the International School of Physics “Enrico Fermi” (N. Zanichelli, Bologna), Vol. 10, pp 294–315.Badyal YS, et al. Electron distribution in water. J Chem Phys. 2000;112(21):9206–9208.Rick SW, Haymet ADJ. Dielectric constant and proton order and disorder in ice Ih: Monte Carlo computer simulations. J Chem Phys. 2003;118(20):9291–9296.Fortes AD, Wood IG, Alfredsson M, Vočadlo L, Knight KS. The incompressibility and thermal expansivity of D2O ice II determined by powder neutron diffraction. J Appl Cryst. 2005;38(4):612–618.Barker JA. Many-body interactions in rare gases: Krypton and xenon. Phys Rev Lett. 1986;57(2):230–233.10033754Cipcigan FS, Sokhan VP, Jones AP, Crain J, Martyna GJ. Hydrogen bonding and molecular orientation at the liquid-vapour interface of water. Phys Chem Chem Phys. 2015;17(14):8660–8669.25715668Aguado A, Bernasconi L, Madden PA. A transferable interatomic potential for MgO from ab initio molecular dynamics. Chem Phys Lett. 2002;356(5):437–444.Ceriotti M, Cuny J, Parrinello M, Manolopoulos DE. Nuclear quantum effects and hydrogen bond fluctuations in water. Proc Natl Acad Sci USA. 2013;110(39):15591–15596.PMC378572624014589Vega C, Abascal JLF, Nezbeda I. Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice. J Chem Phys. 2006;125(3):34503.16863358Mantz YA, Chen B, Martyna GJ. Structural correlations and motifs in liquid water at selected temperatures: Ab initio and empirical model predictions. J Phys Chem B. 2006;110(8):3540–3554.16494410Jones A, et al. Electronically coarse-grained molecular dynamics using quantum Drude oscillators. Mol Phys. 2013;111(22-23):3465–3477.Yu H, van Gunsteren WF. Charge-on-spring polarizable water models revisited: From water clusters to liquid water to ice. J Chem Phys. 2004;121(19):9549–9564.15538877Babin V, Leforestier C, Paesani F. Development of a “first principles” water potential with flexible monomers: Dimer potential energy surface, VRT spectrum, and second virial coefficient. J Chem Theory Comput. 2013;9(12):5395–5403.26592277Sprik M, Klein ML. A polarizable model for water using distributed charge sites. J Chem Phys. 1988;89(12):7556–7560.Lamoureux G, Alexander D, MacKerell J, Roux B. A simple polarizable model of water based on classical Drude oscillators. J Chem Phys. 2003;119(10):5185–5197.Lamoureux G, Roux B. Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm. J Chem Phys. 2003;119(6):3025–3039.Lotrich V, et al. Parallel implementation of electronic structure energy, gradient, and Hessian calculations. J Chem Phys. 2008;128(19):194104.18500853Jones A, Thompson A, Crain J, Müser MH, Martyna GJ. Norm-conserving diffusion Monte Carlo method and diagrammatic expansion of interacting Drude oscillators: Application to solid xenon. Phys Rev B. 2009;79(14):144119.Martyna GJ, Tuckerman ME, Tobias DJ, Klein ML. Explicit reversible integrators for extended systems dynamics. Mol Phys. 1996;87(5):1117–1157.de Leeuw SW, Perram JW, Smith ER. Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants. Proc R Soc Lond A. 1980;373(1752):27–56.Neumann M, Steinhauser O. Computer simulation and the dielectric constant of polarizable polar systems. Chem Phys Lett. 1984;106(6):563–569.Chapela GA, Saville G, Thompson SM, Rowlinson JS. Computer simulation of a gas-liquid surface. Part 1. J Chem Soc, Faraday Trans II. 1977;73(7):1133–1144.Rowlinson JS, Widom B. Molecular Theory of Capillarity. Clarendon; Oxford: 1982.Fanourgakis GS, Xantheas SS. Development of transferable interaction potentials for water. V. Extension of the flexible, polarizable, Thole-type model potential (TTM3-F, v. 3.0) to describe the vibrational spectra of water clusters and liquid water. J Chem Phys. 2008;128(7):074506.18298156Hare DE, Sorensen CM. The density of supercooled water. II. Bulk samples cooled to the homogeneous nucleation limit. J Chem Phys. 1987;87(8):4840–4845.