Most studies on malaria-parasite digestion of hemoglobin (Hb) have been performed using P. falciparum maintained in mature erythrocytes, in vitro. In this study, we examine Plasmodium Hb degradation in vivo in mice, using the parasite P. berghei, and show that it is possible to create mutant parasites lacking enzymes involved in the initial steps of Hb proteolysis. These mutants only complete development in reticulocytes and mature into both schizonts and gametocytes. Hb degradation is severely impaired and large amounts of undigested Hb remains in the reticulocyte cytoplasm and in vesicles in the parasite. The mutants produce little or no hemozoin (Hz), the detoxification by-product of Hb degradation. Further, they are resistant to chloroquine, an antimalarial drug that interferes with Hz formation, but their sensitivity to artesunate, also thought to be dependent on Hb degradation, is retained. Survival in reticulocytes with reduced or absent Hb digestion may imply a novel mechanism of drug resistance. These findings have implications for drug development against human-malaria parasites, such as P. vivax and P. ovale, which develop inside reticulocytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4451122 | PMC |
http://dx.doi.org/10.1084/jem.20141731 | DOI Listing |
Trends Parasitol
January 2025
Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA. Electronic address:
Malaria mortality remains above 500 000 people annually, demonstrating the need for new and innovative control approaches. Using a genome-scale, functional screen of Plasmodium sexual replication, Sayers et al. identified over 300 genes essential for malaria transmission through the mosquito, providing many new candidates for drug and vaccine development.
View Article and Find Full Text PDFFront Parasitol
May 2024
Disease Control and Elimination (DCE), Medical Research Council The Gambia Unit at the London School of Hygiene and Tropical Medicine (LSHTM), Fajara, Gambia.
Further understanding of the molecular mediators of alternative RBC invasion phenotypes in endemic malaria parasites will support malaria blood-stage vaccine or drug development. This study investigated the prevalence of sialic acid (SA)-dependent and SA-independent RBC invasion pathways in endemic parasites from Cameroon and compared the schizont stage transcriptomes in these two groups to uncover the wider repertoire of transcriptional variation associated with the use of alternative RBC invasion pathway phenotypes. A two-color flow cytometry-based invasion-inhibition assay against RBCs treated with neuraminidase, trypsin, and chymotrypsin and deep RNA sequencing of schizont stages harvested in the first replication cycle in culture were employed in this investigation.
View Article and Find Full Text PDFbioRxiv
December 2024
University of Virginia, Department of Biology, Charlottesville, VA, USA.
Changes in the copy number of large genomic regions, termed copy number variations (CNVs), contribute to important phenotypes in many organisms. CNVs are readily identified using conventional approaches when present in a large fraction of the cell population. However, CNVs that are present in only a few genomes across a population are often overlooked but important; if beneficial under specific conditions, a de novo CNV that arises in a single genome can expand during selection to create a larger population of cells with novel characteristics.
View Article and Find Full Text PDFPLoS One
December 2024
Institute of Cell Biology, University of Bern, Bern, Switzerland.
Malaria caused by Plasmodium parasites remains a large health burden. One approach to combat this disease involves vaccinating individuals with whole sporozoites that have been genetically modified to arrest their development at a specific stage in the liver by targeted gene deletion, resulting in a genetically attenuated parasite (GAP). Through a comprehensive phenotyping screen, we identified the hscb gene, encoding a putative iron-sulfur protein assembly chaperone, as crucial for liver stage development, making it a suitable candidate gene for GAP generation.
View Article and Find Full Text PDFmBio
December 2024
Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India.
parasites have a complex life cycle that transitions between mosquito and mammalian hosts, and undergo continuous cellular remodeling to adapt to various drastic environments. Following hepatocyte invasion, the parasite discards superfluous organelles for intracellular replication, and the remnant organelles undergo extensive branching and mature into hepatic merozoites. Autophagy is a ubiquitous eukaryotic process that permits the recycling of intracellular components.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!