Background: There is no cure for dementia, and no treatments exist to halt or reverse the course of the disease. Treatments are aimed at improving cognitive and functional outcomes.
Objective: Our objective was to review the basis of pharmacological treatments for dementia and to summarize the benefits and risks of dementia treatments.
Methods: We performed a systematic literature search of MEDLINE through November 2014, for English-language trials and observational studies on treatment of dementia and mild cognitive impairment. Additional references were identified by searching bibliographies of relevant publications. Whenever possible, pooled data from meta-analyses or systematic reviews were obtained. Studies were included for review if they were randomized trials or observational studies on dementia or mild cognitive impairment that evaluated efficacy outcomes or adverse outcomes associated with treatment. Studies were excluded if they evaluated non-FDA approved treatments, or if they evaluated treatment in disorders other than dementia and mild cognitive impairment.
Results: The literature search found 540 potentially relevant studies, of which 257 were included in the systematic review. In pooled trial data, cholinesterase inhibitors (ChEIs) produce small improvements in cognitive, functional, and global benefits in patients with mild to moderate Alzheimer's and Lewy body dementia, but the clinical significance of these effects are unclear. There is no significant benefit seen for vascular dementia. The efficacy of ChEI treatment appears to wane over time, with minimal benefit seen after 1 year. There is no evidence for benefit for those with advanced disease or those aged over 85 years. Adverse effects are significantly increased with ChEIs, in a dose-dependent manner. A two- to fivefold increased risk for gastrointestinal, neurological, and cardiovascular side effects is related to cholinergic stimulation, the most serious being weight loss, debility, and syncope. Those aged over 85 years have double the risk of adverse events compared with younger patients. Memantine monotherapy may provide some cognitive benefit for patients with moderate to severe Alzheimer's and vascular dementia, but the benefit is small and may wane over the course of several months. Memantine exhibits no significant benefit in mild dementia or Lewy body dementia or as an add-on treatment with ChEIs. Memantine has a relatively favorable side-effect profile, at least under controlled trial conditions.
Conclusions: ChEIs produce small, short-lived improvements in cognitive function in mild to moderate dementia, which may not translate into clinically meaningful effects. Marginal benefits are seen with severe disease, long-term treatment, and advanced age. Cholinergic side effects, including weight loss, debility, and syncope, are clinically significant and could be especially detrimental in the frail elderly population, in which the risks of treatment outweigh the benefits. Memantine monotherapy may have minimal benefits in moderate to severe dementia, balanced by minimal adverse effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s40266-015-0266-9 | DOI Listing |
J Ultrasound
January 2025
Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, ASUGI, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy.
Introduction: Post-stroke cognitive impairment (PSCI) and dementia affect short- and long-term outcome after stroke and can persist even after recover from a physical handicap. The process underlying PSCI is not yet fully understood. Transcranial Doppler ultrasound (TCD) is a feasible method to investigate cerebrovascular aging or dementia, through the pulsatility index (PI), the cerebrovascular reactivity (e.
View Article and Find Full Text PDFClin Epigenetics
January 2025
Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.
View Article and Find Full Text PDFBMC Prim Care
January 2025
Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.
Aims: To study differences in cardiovascular prevention and hypertension management in primary care in men and women, with comparisons between public and privately operated primary health care (PHC).
Methods: We used register data from Region Stockholm on collected prescribed medication and registered diagnoses, to identify patients aged 30 years and above with hypertension. Age-adjusted logistic regression was used to calculate odds ratios (ORs) with 99% confidence intervals (99% CIs) using public PHC centers as referents.
Methods Cell Biol
January 2025
Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Santa Maria, RS, Brazil.
Alzheimer's disease (AD) is the leading cause of dementia in the elderly, clinically characterized by memory loss, cognitive decline, and behavioral disturbances. Its pathogenesis is not fully comprehended but involves intracellular depositions of amyloid beta peptide (Aβ) and neurofibrillary tangles of hyperphosphorylated tau. Currently, pharmacological interventions solely slow the progression of symptoms.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Department of Pharmacology, SPP School of Pharmacy & Technology Management, Mumbai, India. Electronic address:
The foremost cause of dementia is Alzheimer's disease (AD). The vital pathological hallmarks of AD are amyloid beta (Aβ) peptide and hyperphosphorylated tau (p-tau) protein. The current animal models used in AD research do not precisely replicate disease pathophysiology, making it difficult for researchers to quickly and effectively gather data or screen potential therapy possibilities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!