Early detection of residual tumour and local tumour progression (LTP) after radiofrequency (RF) ablation is crucial in the decision whether or not to re-ablate. In general, standard contrast-enhanced computed tomography (CT) is used to evaluate the technique effectiveness; however, it is difficult to differentiate post-treatment changes from residual tumour. Dual-energy CT (DECT) is a relatively new technique that enables more specific tissue characterisation of iodine-enhanced structures because of the isolation of iodine in the imaging data. Necrotic post-ablation zones can be depicted as avascular regions by DECT on greyscale- and colour-coded iodine images. Synthesised monochromatic images from dual-energy CT with spectral analysis can be used to select the optimal keV to achieve the highest contrast-to-noise ratio between tissues. This facilitates outlining the interface between the ablation zone and surrounding tissue. Post-processing of DECT data can lead to an improved characterisation and delineation of benign post-ablation changes from LTP. Radiologists need to be familiar with typical post-ablation image interpretations when using DECT techniques. Here, we review the spectrum of changes after RF ablation of liver, kidney, and lung lesions using single-source DECT imaging, with the emphasis on the additional information obtained and pitfalls encountered with this relatively new technique. Teaching Points •Technical success of RF ablation means complete destruction of the tumour. •Assessment of residual tumour on contrast-enhanced CT is hindered by post-ablative changes. •DECT improves material differentiation and may improve focal lesion characterisation. •Iodine maps delineate the treated area from the surrounding parenchyma well.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4444790 | PMC |
http://dx.doi.org/10.1007/s13244-015-0408-y | DOI Listing |
Int J Mol Sci
December 2024
Department of Oncology, University Hospital of Udine, 33100 Udine, Italy.
Liquid biopsy (LB) involves the analysis of circulating tumour-derived DNA (ctDNA), providing a minimally invasive method for gathering both quantitative and qualitative information. Genomic analysis of ctDNA through next-generation sequencing (NGS) enables comprehensive genetic profiling of tumours, including non-driver alterations that offer prognostic insights. LB can be applied in both early-stage disease settings, for the diagnosis and monitoring of minimal residual disease (MRD), and advanced disease settings, for monitoring treatment response and understanding the mechanisms behind disease progression and tumour heterogeneity.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Radiology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA.
: Contrast-enhanced ultrasound (CEUS) is a non-invasive imaging technique with similar accuracy to CT and MRI for the diagnosis of hepatocellular carcinoma (HCC). CEUS offers several advantages in patient populations who have contraindications for CT or MRI. There are limited prospective studies in the United States evaluating the diagnostic equivalence of CEUS following transcatheter arterial chemoembolization (TACE) with same-day CT/MRI.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
Cancer recurrence and metastasis remain critical challenges following surgical resection, influenced by complex perioperative mechanisms. This review explores how surgical stress triggers systemic changes, such as neuroendocrine responses, immune suppression, and inflammation, which promote the dissemination of residual cancer cells and circulating tumor cells. Key mechanisms, such as epithelial-mesenchymal transition and angiogenesis, further enhance metastasis, while hypoxia-inducible factors and inflammatory responses create a microenvironment conducive to tumor progression.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Pathology, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany.
Background/objectives: Locally advanced rectal cancer is treated with neoadjuvant chemoradiotherapy (nCRT) followed by total mesorectal excision (TME). As this approach achieves complete pathologic remissions (pCR) in approximately 30% of patients, it raises the question of whether surgery is always necessary. Non-surgical strategies, such as "watch and wait" (W&W), have shown similarly promising outcomes.
View Article and Find Full Text PDFZhonghua Xue Ye Xue Za Zhi
December 2024
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China.
Minimal residual disease (MRD), a crucial biomarker for assessing efficacy and predicting recurrence, refers to residual tumor cells remaining in the body of patients with hematological malignancies who achieved complete remission after treatment. This study aimed to conduct a retrospective analysis of the clinical diagnosis, treatment, and MRD monitoring of a pediatric patient with multiple acute B-lymphocytic leukemia relapses, alongside a review of relevant literature. In this case, Ig rearrangement based on next-generation sequencing (NGS) was more accurate in assessing the MRD level, compared with the traditional method of MRD detection, indicating the risk of earlier relapse and guided interventions in time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!