Sanitizing effect of ethanol on a Yersinia enterocolitica biofilm was evaluated in terms of biomass removal and bactericidal activity. We found that 40 % ethanol was most effective for biofilm biomass removal; however, no significant difference was observed in bactericidal activity between treatment with 40 and 70 % ethanol. This unexpected low ethanol concentration requirement for biomass removal was confirmed using biofilms of two additional pathogenic bacteria, Aeromonas hydrophila and Xanthomonas oryzae. Although only three pathogenic Gram-negative bacteria were tested and the biofilm in nature was different from the biofilm in this study, the results in this study suggested the possible re-evaluation of the effective sanitizing ethanol concentration 70 %, which is the concentration commonly employed for sanitization, on bacteria in a biofilm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00284-015-0828-4 | DOI Listing |
J Environ Manage
January 2025
Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, Aas, 1430, Norway.
Primary sludge can serve as an internal carbon source for denitrification in wastewater treatment plants (WWTPs). This study explores the use of alkaline treatment to produce a fermentation broth from primary sludge, which predominantly contains short-chain volatile fatty acids (VFAs), with acetic acid and propionic acid making up over 65% of the total VFAs. The performance of this fermentation broth as a sole carbon source for denitrification was compared with that of sodium acetate, acetic acid, methanol, and ethanol in both biofilm and activated sludge systems.
View Article and Find Full Text PDFEnviron Res
February 2025
Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, Shaanxi Province, 710021, China; Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, China; Key Laboratory of Cultivated Land Quality Monitoring and Conservation, Ministry of Agriculture and Rural Affairs, China.
Environ Monit Assess
December 2024
Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt.
Water Res
February 2025
Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland. Electronic address:
Deciphering relationships between sulfate-reducing bacteria (SRB) and other microorganisms is crucial for stable operation of anaerobic digestion systems when treating sulfate-containing wastewater. However, few studies have differentiated the incomplete oxidizing SRB (IO-SRB) and complete oxidizing SRB (CO-SRB) in anaerobic digestion ecosystems. Four ethanol-fed bioreactors were operated under two operational modes (sequencing batch reactor, SBR; and continuous-flow reactor, CFR) and two chemical oxygen demand (COD) to sulfate ratios (1 and 2) to systematically explore strategies for enriching IO-SRB and/or CO-SRB and their microbial interactions with other microorganisms.
View Article and Find Full Text PDFRSC Adv
November 2024
Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
This study employs zero-cost (≈0.01 $) and durable thread-based devices to evaluate the quality of simulated and commercial sanitizer samples through dye displacement assay (DDA). A diverse range of sanitizer compositions, including ethanol concentrations of 55%, 75%, and 95% (v/v), were analysed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!