As the name reveals, acetate-free biofiltration (AFB) is featured by lack of acetate and this would seem to allow better hemodynamic stability. However, AFB also has a unique characteristic of carbon dioxide (CO2 )-free dialysate, whereas all other modern dialysis techniques imply an overload of CO2 from dialysate to the patient. This notwithstanding the role of CO2 in tolerance to dialysis treatment, both AFB and all other dialysis techniques seem not investigated in due depth. Specifically, the amount of CO2 coming back to the patient's bloodstream during AFB and bicarbonate dialysis (BD) is unknown. We measured partial pressure of CO2 (pCO2 ) in blood samples withdrawn from the venous line of the extracorporeal circuit during BD and subsequently during AFB in 22 stable chronic hemodialysis outpatients. The amount of CO2 coming back to the patient's bloodstream is higher in BD (59.1 ± 4.0 mmol/L) than in AFB (42.8 ± 4.5 mmol/L, P < 0.0001). Such difference exceeds 30%. Moreover, shifting from BD to AFB shows, notably for each patient, the reduction of pCO2 toward physiological values. BD implies CO2 overload from dialysate, whereas AFB does not. Further studies are required to evaluate if AFB would be the most appropriate dialysis technique in patients affected by chronic, but especially acute, lung diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1111/aor.12477DOI Listing

Publication Analysis

Top Keywords

carbon dioxide
8
acetate-free biofiltration
8
dialysis techniques
8
amount co2
8
co2 coming
8
coming patient's
8
patient's bloodstream
8
afb
6
co2
6
dioxide acetate-free
4

Similar Publications

Antarctic nematodes survival in Martian and Lunar regolith simulants under terrestrial conditions.

An Acad Bras Cienc

January 2025

Universidade de Brasília, Laboratório de Criptógamas, Departamento de Botânica, Campus Universitário Darcy Ribeiro, Bloco D, 1° Andar, 70910-900 Brasília, DF, Brazil.

The exploration of extraterrestrial environments has become a focal point of scientific inquiry, driven by advancements in technology and a growing interest in the potential for life beyond Earth. This study investigates the adaptability of Antarctic nematodes, known for thriving in extreme cold and isolation, to simulated Martian (MGS-1) and Lunar (LMS-1) soils. The experiment revealed differential responses in nematode survivability to the two simulants, with Lunar soil demonstrating better adaptability compared to Martian soil.

View Article and Find Full Text PDF

Carbon dioxide (CO2) capture and its subsequent catalytic fixation into usable compounds represent a potential approach for addressing the energy problem and the implications of global warming. Hence, it is necessary to develop effective catalytic systems required for the transformation of CO2 into valuable chemicals/fuels. Herein, we rationally designed a hydroxyl-functionalized porous organic framework (OH-POF) consisting of both acidic (OH) as well as basic N sites for the transformation of CO2 using epoxides for the production of cyclic carbonates (CCs), a useful commodity chemical under environmental-friendly, metal/solvent/co-catalyst-free conditions.

View Article and Find Full Text PDF

Heterogeneous catalysts have emerged as a potential key for closing the carbon cycle by converting carbon dioxide (CO) into value-added chemicals. In this work, we report a highly active and stable ceria (CeO)-based electronically tuned trimetallic catalyst for CO to CO conversion. A unique distribution of electron density between the defective ceria support and the trimetallic nanoparticles (of Ni, Cu, Zn) was established by creating the strong metal support interaction (SMSI) between them.

View Article and Find Full Text PDF

Scandium-III-nitrides: A New Material Platform for Semiconductor Photocatalysts with High Reducing Power.

Nano Lett

January 2025

Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, Quebec H3A 0E9, Canada.

Semiconductor nanowires have become emerging photocatalysts in artificial photosynthesis processes for solar fuel production. For reduction reactions, semiconductor photocatalysts with high reducing powers are highly desirable, especially for chemicals that are extremely difficult to reduce. This study introduces a new semiconductor photocatalyst, scandium (Sc)-III-nitrides, which have higher reducing powers than all conventional semiconductor photocatalysts.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) electrosynthesis via the 2e oxygen reduction reaction (ORR) is considered as a cost-effective and safe alternative to the energy-intensive anthraquinone process. However, in more practical environments, namely, the use of neutral media and air-fed cathode environments, slow ORR kinetics and insufficient oxygen supply pose significant challenges to efficient HO production at high current densities. In this work, mesoporous B-doped carbons with novel curved BC active sites, synthesized via a carbon dioxide (CO) reduction using a pore-former agent, to simultaneously achieve excellent 2e ORR activity and improved mass transfer properties are introduced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!