An intensive measurement campaign was undertaken to characterize eight fractions of organic carbon (OC) and elemental carbon (EC) in particulate matter (PM) at four urban sites with different pollution characteristics during summer, post-monsoon, and winter at Kanpur, India. Speciation samplers were used to collect particulate samples on quartz filters followed by analysis of OC and EC using Interagency Monitoring of Protected Visual Environments (IMPROVE)-based thermal/optical reflectance (TOR) method. Based on 24-h average results at each site, the highest levels of OC and EC were observed during winter as 96.7 ± 26.9 and 31.8 ± 9.8 μg/m(3) at residential site and traffic site, respectively. The levels of OC at residential sites during winter appeared to be more than twice of that during summer. The site close to the road traffic had the least value of OC/EC, as 1.77 ± 0.28 during post-monsoon, and the site influenced by emissions of domestic cooking and heating had the highest value of OC/EC, as 4.05 ± 0.79 during winter. The average abundances of OC1, OC2, OC3, OC4, OP, EC1, EC2, and EC3 in total carbon (TC) at all sites for three seasons were 10.03, 19.04, 20.03, 12.32, 10.53, 33.39, 3.21, and 1.99 %, respectively. A sharp increase in levels of OC1 and EC1-OP during winter at two residential sites revealed that biomass burning could be a significant contributor to carbonaceous aerosols. From the application of EC-tracer method, it was observed that contribution of secondary organic carbon (SOC) to PM mass increased from 5 % during post-monsoon to 16 % during winter at residential sites and from 2 % during post-monsoon to 7 % during winter at traffic sites. Therefore, it could be inferred that increase in primary emissions coupled with unfavorable meteorological conditions could cause particle agglomeration and hygroscopic growth, leading to unpleasant pollution episode during winter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-015-4603-7 | DOI Listing |
Heliyon
January 2025
Environmental Energy Technologies Laboratory (EETL), Department of Physics, University of Yaounde I, P.O Box 812, Yaounde, Cameroon.
This research aims to identify wet-cooled CSP (Concentrated Solar Power) solar power plants connected to the existing electricity grid in Cameroon. This study uses a hybrid approach which combines an MDCM-AHP method (Multi-Criteria Analysis Method - Hierarchical Analysis Process) and a GIS (Geographic Information System). The elements studied are the climate (Direct Normal Irradiance (DNI), temperature), orography (slope and elevation) and location (proximity to the electricity network, proximity to roads and railways, proximity to homes), in order to determine the weight of these different factors and combine them to obtain the final map.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Molecular Invertebrate Systematics and Ecology Laboratory, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan; Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan. Electronic address:
The coastline of Okinawa Island, Japan, has been affected by human-made alterations for decades, often from land reclamation and coastal defense construction. Here, we use an Imperial Japanese Army map made between 1919 and 1921 to describe the composition of the Okinawan coastline approximately 100 years ago, and by overlapping this old map with a modern-day map of Okinawa (2018), we identified 131 sites where coastlines showed clear human-made alterations. For these sites, we examined what kinds of ecosystems were lost and what has replaced them.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Center for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
In the Johor River Basin, a comprehensive analysis was conducted on 24 water environmental parameters across 33 sampling sites over 3 years, encompassing both dry and wet seasons. A total of 396 water samples were collected and analyzed to calculate the Water Quality Index (WQI). To further assess water quality and pinpoint potential pollution sources, multivariate techniques such as principal component analysis (PCA) and cluster analysis (CA), alongside spatial analysis using inverse distance weighted (IDW) interpolation, were employed.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Biological Sciences, University of Illinois Chicago, Chicago, IL, United States.
Archaeol Anthropol Sci
December 2024
Department of Cultures, Archaeology, University of Helsinki, Helsinki, Finland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!