Adaptive optics in spinning disk microscopy: improved contrast and brightness by a simple and fast method.

J Microsc

UMR 144 CNRS Institut Curie, Cell and Tissue Imaging Platform (PICT-IBiSA), Nikon Imaging Centre, Paris, France.

Published: September 2015

Multiconfocal microscopy gives a good compromise between fast imaging and reasonable resolution. However, the low intensity of live fluorescent emitters is a major limitation to this technique. Aberrations induced by the optical setup, especially the mismatch of the refractive index and the biological sample itself, distort the point spread function and further reduce the amount of detected photons. Altogether, this leads to impaired image quality, preventing accurate analysis of molecular processes in biological samples and imaging deep in the sample. The amount of detected fluorescence can be improved with adaptive optics. Here, we used a compact adaptive optics module (adaptive optics box for sectioning optical microscopy), which was specifically designed for spinning disk confocal microscopy. The module overcomes undesired anomalies by correcting for most of the aberrations in confocal imaging. Existing aberration detection methods require prior illumination, which bleaches the sample. To avoid multiple exposures of the sample, we established an experimental model describing the depth dependence of major aberrations. This model allows us to correct for those aberrations when performing a z-stack, gradually increasing the amplitude of the correction with depth. It does not require illumination of the sample for aberration detection, thus minimizing photobleaching and phototoxicity. With this model, we improved both signal-to-background ratio and image contrast. Here, we present comparative studies on a variety of biological samples.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jmi.12256DOI Listing

Publication Analysis

Top Keywords

adaptive optics
16
spinning disk
8
amount detected
8
biological samples
8
aberration detection
8
sample
5
adaptive
4
optics spinning
4
microscopy
4
disk microscopy
4

Similar Publications

A novel all-fiber optic current sensor (FOCS) is designed specifically for the measurement of large transient currents based on the Faraday effect. A reciprocal symmetric structure is incorporated into the optical sensing loop, and the current dependent phase demodulation is achieved by using a passive optical fiber coupler and the homodyne detection scheme. This design offers several advantages, including structural simplicity, high voltage insulation, low noise, high linearity, and excellent frequency response, and is highly suitable for use in any system of high-voltage, high-power, and high-frequency in nature.

View Article and Find Full Text PDF

Significance: Previous evidence showed that transient receptor potential vanilloid 4 (TRPV4) inhibition was protective of retinal ganglion cell (RGC) loss after chronic intraocular pressure (IOP) elevation in young animals. However, the role of TRPV4 in mechanosensing IOP changes in the aging eye is not well understood.

Purpose: This study compared the recovery of retinal function and structure after acute IOP elevation in 3- and 12-month-old mouse eyes with and without TRPV4 inhibition.

View Article and Find Full Text PDF

Super-resolution (SR) neural networks transform low-resolution optical microscopy images into SR images. Application of single-image SR (SISR) methods to long-term imaging has not exploited the temporal dependencies between neighboring frames and has been subject to inference uncertainty that is difficult to quantify. Here, by building a large-scale fluorescence microscopy dataset and evaluating the propagation and alignment components of neural network models, we devise a deformable phase-space alignment (DPA) time-lapse image SR (TISR) neural network.

View Article and Find Full Text PDF

Animals and humans possess an adaptive ability to rapidly estimate approximate numerosity, yet the visual mechanisms underlying this process remain poorly understood. Evidence suggests that approximate numerosity relies on segmented perceptual units modulated by grouping cues, with perceived numerosity decreasing when objects are connected by irrelevant lines, independent of low-level features. However, most studies have focused on physical objects.

View Article and Find Full Text PDF

Analysis and optimization of the landing zone parameters of a sclera lens model.

Arq Bras Oftalmol

January 2025

Ophthalmology and Visual Sciences Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.

Purpose: This study aimed to modify scleral contact lenses to achieve a desired compression standard and to evaluate the effectiveness and reliability of the adjustments.

Methods: In this nonrandomized, noncomparative, and partially masked study Scleral contact lens fittings were analyzed in 20 eyes of 12 patients (50% women, 50% men) diagnosed with keratoconus. Participants were selected based on their need for scleral contact lenses (SCLs), which was determined in complete ophthalmological examinations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!