To evaluate oxidant and antioxidant status of the brain (hindbrain, midbrain, and forebrain) in chickens with cold-induced pulmonary hypertension, the measurements of lipid peroxidation, protein oxidation, antioxidant capacity, enzymatic activity, and gene expression (for catalase, glutathione peroxidase, and superoxide dismutases) were done. There were high lipid peroxidation/protein oxidation and low antioxidant capacity in the hindbrain of cold-induced pulmonary hypertensive chickens compared to control (P < 0.05). In the hypertensive chickens, superoxide dismutase activity was decreased (forebrain, midbrain, and hindbrain), while catalase activity was increased (forebrain and midbrain) (P < 0.05). Glutathione peroxidase activity did not change. Relative gene expression of catalase and superoxide dismutases (1 and 2) was downregulated, while glutathione peroxidase was upregulated in the brain of the cold-induced pulmonary hypertensive chickens. Probably, these situations in the oxidant and antioxidant status of the brain especially hindbrain may change its function at cardiovascular center and sympathetic nervous system to exacerbate pulmonary hypertension.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00484-015-0968-z | DOI Listing |
J Physiol Anthropol
October 2024
Clinical Research Institute, Division of Preventive Medicine, National Hospital Organization Kyoto Medical Center, Kyoto, Japan.
Background: Thermogenesis is influenced by fluctuations in sex hormones during the menstrual cycle in premenopausal women. The thermogenic activity and mass of brown adipose tissue (BAT) are regulated by endocrine factors, including sex hormones and fibroblast growth factor 21 (FGF21). However, the relationship between human BAT and these endocrine fluctuations within individuals remains to be elucidated.
View Article and Find Full Text PDFJ Anim Sci Biotechnol
July 2024
Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China.
Front Cardiovasc Med
June 2024
Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium.
Introduction: Compared with traditional static ice storage, controlled hypothermic storage (CHS) at 4-10°C may attenuate cold-induced lung injury between procurement and implantation. In this study, we describe the first European lung transplant (LTx) experience with a portable CHS device.
Methods: A prospective observational study was conducted of all consecutively performed LTx following CHS (11 November 2022 and 31 January 2024) at two European high-volume centers.
Circ Heart Fail
May 2024
Department of Medicine, Division of Cardiology (J.B.L., C.B.P., S.C., C.L.H., A.D.D.), Duke University Hospital, Durham, NC.
Background: Heart transplant (HT) in recipients with left ventricular assist devices (LVADs) is associated with poor early post-HT outcomes, including primary graft dysfunction (PGD). As complicated heart explants in recipients with LVADs may produce longer ischemic times, innovations in donor heart preservation may yield improved post-HT outcomes. The SherpaPak Cardiac Transport System is an organ preservation technology that maintains donor heart temperatures between 4 °C and 8 °C, which may minimize ischemic and cold-induced graft injuries.
View Article and Find Full Text PDFRes Vet Sci
March 2024
Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695-7608, United States of America. Electronic address:
The objective of this experiment was to evaluate the effects of dietary fish oil and pioglitazone as peroxisome proliferators-activated receptor gamma (PPARγ) activating ligands on the reduction of cold-induced ascites in broiler chickens. A total of 480 one-day-old (Ross 308) male chicks were randomly allocated to four treatment groups with eight replicates of 15 birds each. The following treatments were used: 1) ambient temperature (negative control), with basal diet; 2) cold-induced ascites (positive control), with basal diet; 3) cold-induced ascites, with basal diet +10 mg/kg/day pioglitazone and 4) cold-induced ascites, with basal diet +1% of fish oil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!