Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Maklamicin is a spirotetronate-class antibiotic produced by Micromonospora sp. NBRC 110955, and a polyketide assembly line and a glycerate utilization system are involved in its biosynthesis. One tailoring step in the biosynthesis is predicted to be post-polyketide synthase (PKS) modification, which seems to be catalysed by putative cytochrome P450 monooxygenases, MakC2 and/or MakC3. In this study, we characterized makC2 and makC3 in the biosynthesis of maklamicin and identified a new maklamicin analogue from a makC2 disruptant. Gene deletion of makC2 resulted in the complete loss of maklamicin production with concomitant accumulation of a new compound (29-deoxymaklamicin), while gene deletion of makC3 did not affect the maklamicin production, indicating that 29-deoxymaklamicin is an intermediate in the biosynthetic pathway of maklamicin and should serve as the substrate of MakC2. 29-Deoxymaklamicin showed strong-to-modest anti-microbial activity against gram-positive bacteria. The fact that Streptomyces avermitilis heterologously expressing makC2 successfully converted 29-deoxymaklamicin into maklamicin confirmed that MakC2 is the final-step hydroxylase in the formation of mature maklamicin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiosc.2015.04.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!