In an attempt to elucidate the relationship and underlying processes of metal oxidation under stress, we combined the electrochemical characterisation with Density-Functional-Theory (DFT) calculations to interrogate the (100) surface of copper. The oxidised (100) surface shows a missing-row reconstruction, which is believed to be driven by surface stress. Hence, additional mechanical stimuli might have a significant impact on the onset of Cu oxidation. We find that different surface sites respond differently to strain. Oads at the thermodynamically favoured high-coordination hollow site (O coordinated to four Cu) is stabilised by up to 130 meV by imposing 2% tensile strain onto the surface, while the low-coordination top site (O coordinated to one Cu) shows a markedly different sensitivity. By cramping into the hollow site, Oads induces compressive stress into the (100) surface, an effect that is largely absent for the adsorption at the top site. We also find that the thermodynamic advantage of reconstructive underpotential surface oxidation is diminished under tensile strain. Hence, imposing tensile stress counter-balances the oxygen induced surface stress, which might have an implication on the onset of bulk copper oxidation. Studying Cu(100) single crystal surfaces in perchloric acid using cyclic voltammetry, we were able to confirm sensitivity of the electrochemical response towards the elastic strain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4fd00247d | DOI Listing |
Nanoscale
January 2025
Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
Single atom alloys (SAAs) have gained tremendous attention as promising materials with unique physicochemical properties, particularly in catalysis. The stability of SAAs relies on the formation of a single active dopant on the surface of a metal host, quantified by the surface segregation and aggregation energy. Previous studies have investigated the surface segregation of non-ligated and ligated SAAs to reveal the driving forces underlying such phenomena.
View Article and Find Full Text PDFSmall
January 2025
College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
Currently, CsPbI quantum dots (QDs) based light-emitting diodes (LEDs) are not well suited for achieving high efficiency and operational stability due to the binary-precursor method and purification process, which often results in the nonstoichiometric ratio of Cs/Pb/I. This imbalance leads to amounts of iodine vacancies, inducing severe non-radiative recombination processes and phase transitions of QDs. Herein, red-emitting CsPbI QDs are reported with excellent optoelectronic properties and stability based on the synergistic effects of halide-rich modulation passivation and lattice repair.
View Article and Find Full Text PDFBiomater Sci
January 2025
Biotechnology Centre, The Silesian University of Technology, B. Krzywoustego 8, 44-100, Gliwice, Poland.
Metallic biomaterials are extensively used in orthopedics and dentistry, either as implants or coatings. In both cases, metal ions come into contact with surrounding tissues causing a particular cell response. Here, we present a biofabricated tissue model, consisting of a hydrogel reinforced with a melt electrowritten mesh, to study the effects of bound and released metal ions on surrounding cells embedded in a hydrogel matrix.
View Article and Find Full Text PDFCurr Res Food Sci
December 2024
Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
To improve the stability of D-limonene, a protective barrier is essential to prevent degradation and maintain its integrity. Therefore, the potential of using seed gum (LPSG) as a novel source for creating electrospun nanofibers for D-limonene encapsulation was investigated by varying LPSG concentrations (0.25%, 0.
View Article and Find Full Text PDFCureus
December 2024
Business Development Hospitals, Wockhardt Hospitals Ltd., Mumbai, IND.
Background and objectives The persistent nature of diabetic foot ulcers (DFUs) is mainly attributable to compromised wound healing mechanisms, which are aggravated due to poor blood flow, neuropathy, and infection. Growth factors have become essential agents in the treatment of DFUs, serving as primary mediators that enhance wound healing through the stimulation of cell proliferation, migration, and angiogenesis. This prospective open-label, randomised, comparative, multi-centre, investigator-initiated study compared the safety and effectiveness of adjuvant therapy with topical application of autologous growth factor concentrate (AGFC) using the Healrex therapy kit (Wockhardt, India) versus standard of care (SoC) in DFUs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!