Syphilitic hepatitis uncommon presentation of an old scourge.

Mil Med

Department of Gastroenterology, Brooke Army Medical Center, 3551 Roger Brooke Drive, Fort Sam Houston, TX 78234.

Published: May 2015

Background: Giant cell hepatitis is a rare entity in adults, accounting for 0.1% to 0.25% of liver disease in adults. Postinfantile giant cell hepatitis is often characterized by multinucleated giant cells on liver biopsy and a fulminant hepatitis.

Case Report: An active duty 36-year-old African-American male deployed to Kabul, Afghanistan, presented with jaundice 2 weeks after starting a testosterone analogue. He discontinued the supplement, but his jaundice persisted with up-trending bilirubin. Serologic testing was negative for hepatitis A, B, C, and E; cytomegalovirus; Epstein-Barr virus; herpes simplex virus; and human immunodeficiency virus. Evaluation for autoimmune hepatitis was negative. Magnetic resonance cholangiopancreatography was negative for obstruction. Liver biopsy revealed giant cell transformation of numerous hepatocytes and cholestatic hepatitis. Rapid plasma reagin was positive without physical findings. Treponema pallidum hemagglutination assays confirmed the diagnosis of latent syphilis. He was started on penicillin treatment with rapid improvement of bilirubin, creatinine, and hepatic synthetic function, all of which eventually normalized.

Conclusion: Postinfantile giant cell hepatitis is a severe form of hepatitis that has several different potential etiologies, 2 of which were present in this patient: androgenic supplements and infection. This case highlights syphilis as an unusual but treatable cause of giant cell hepatitis. Testing for syphilis should be considered in any persistent liver injury.

Download full-text PDF

Source
http://dx.doi.org/10.7205/MILMED-D-14-00530DOI Listing

Publication Analysis

Top Keywords

giant cell
20
cell hepatitis
16
hepatitis
8
postinfantile giant
8
liver biopsy
8
giant
6
cell
5
syphilitic hepatitis
4
hepatitis uncommon
4
uncommon presentation
4

Similar Publications

Once believed to be the culprits of epileptogenic activity, the functional properties of balloon/giant cells (BC/GC), commonly found in some malformations of cortical development including focal cortical dysplasia type IIb (FCDIIb) and tuberous sclerosis complex (TSC), are beginning to be unraveled. These abnormal cells emerge during early brain development as a result of a hyperactive mTOR pathway and may express both neuronal and glial markers. A paradigm shift occurred when our group demonstrated that BC/GC in pediatric cases of FCDIIb and TSC are unable to generate action potentials and lack synaptic inputs.

View Article and Find Full Text PDF

Glioblastoma is the most frequent and malignant primary brain tumor. Although the survival is generally dismal for glioblastoma patients, risk stratification and the identification of high-risk subgroups is important for prompt and aggressive management. The G1-G7 molecular subgroup classification based on the MAPK pathway activation has offered for the first time a non-redundant, all-inclusive classification of adult glioblastoma.

View Article and Find Full Text PDF

This study investigates the mechanical properties as well as and cyto- and biocompatibility of collagen membranes cross-linked with glutaraldehyde (GA), proanthocyanidins (PC), hexamethylendiisocyanate (HMDI) and 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EC/NHS). A non-crosslinked membrane was used as reference control (RF). The initial cytotoxic analyses revealed that the PC, EC, and HMDI crosslinked membranes were cytocompatible, while the GA crosslinked membrane was cytotoxic and thus selected as positive control in the further study.

View Article and Find Full Text PDF

Coplanar Dimeric Acceptors with Bathochromic Absorption and Torsion-Free Backbones through Precise Fluorination Enabling Efficient Organic Photovoltaics with 18.63% Efficiency.

Adv Sci (Weinh)

January 2025

Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen, Guangdong, 529199, P. R. China.

Giant dimeric acceptors (GDAs), a sub-type of acceptor materials for organic solar cells (OSCs), have garnered much attention due to the synergistic advantages of their monomeric and polymeric acceptors, forming a well-defined molecular structure with a giant molecular weight for high efficiency and stability. In this study, for the first time, two new GDAs, DYF-V and DY2F-V are designed and synthesized for OSC operation, by connecting one vinylene linker with the mono-/di-fluorinated end group on two Y-series monomers, respectively. After fluorination, both DYF-V and DY2F-V exhibit bathochromic absorption and denser packing modes due to the stronger intramolecular charge transfer effect and torsion-free backbones.

View Article and Find Full Text PDF

A dendritic hexamer acceptor enables 19.4% efficiency with exceptional stability in organic solar cells.

Nat Commun

January 2025

Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, China.

To achieve the commercialization of organic solar cells (OSCs), it is crucial not only to enhance power conversion efficiency (PCE) but also to improve device stability through rational molecular design. Recently emerging giant molecular acceptor (GMA) materials offer various advantages, such as precise chemical structure, high molecular weight (beneficial to film stability under several external stress), and impressive device efficiency, making them a promising candidate. Here, we report a dendritic hexamer acceptor developed through a branch-connecting strategy, which overcomes the molecular weight bottleneck of GMAs and achieves a high production yield over 58%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!