Joint infrared target recognition and segmentation using a shape manifold-aware level set.

Sensors (Basel)

School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA.

Published: April 2015

We propose new techniques for joint recognition, segmentation and pose estimation of infrared (IR) targets. The problem is formulated in a probabilistic level set framework where a shape constrained generative model is used to provide a multi-class and multi-view shape prior and where the shape model involves a couplet of view and identity manifolds (CVIM). A level set energy function is then iteratively optimized under the shape constraints provided by the CVIM. Since both the view and identity variables are expressed explicitly in the objective function, this approach naturally accomplishes recognition, segmentation and pose estimation as joint products of the optimization process. For realistic target chips, we solve the resulting multi-modal optimization problem by adopting a particle swarm optimization (PSO) algorithm and then improve the computational efficiency by implementing a gradient-boosted PSO (GB-PSO). Evaluation was performed using the Military Sensing Information Analysis Center (SENSIAC) ATR database, and experimental results show that both of the PSO algorithms reduce the cost of shape matching during CVIM-based shape inference. Particularly, GB-PSO outperforms other recent ATR algorithms, which require intensive shape matching, either explicitly (with pre-segmentation) or implicitly (without pre-segmentation).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481947PMC
http://dx.doi.org/10.3390/s150510118DOI Listing

Publication Analysis

Top Keywords

recognition segmentation
12
level set
12
shape
8
segmentation pose
8
pose estimation
8
view identity
8
shape matching
8
joint infrared
4
infrared target
4
target recognition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!