AI Article Synopsis

  • The study aimed to create chitosan nanospheres to effectively load and release BMP-2, focusing on evaluating their size, zeta potential, appearance, degradation, and release characteristics.
  • The BMP-2 loaded chitosan nanospheres were successfully formed using an ionic crosslinking method, resulting in spherical, smooth particles averaging 150.85 nm in size with a positive zeta potential.
  • Results indicated that these nanospheres exhibited good loading and encapsulation efficiencies and demonstrated a controlled release of BMP-2 over 30 days, highlighting their potential for use in bone tissue engineering.

Article Abstract

Purpose: To prepare chitosan nanospheres for loading of BMP-2 and to evaluate its size, zeta potential, appearance, degradation and release characteristic in vitro, and then to investigate its feasibility as a carrier for sustained release of BMP-2.

Methods: The BMP-2 loaded chitosan nanospheres were prepared using ionic crosslinking method with tripolyphosphate (TPP) and chitosan. Transmission electron microscope was used to evaluate the morphological properties, and laser particle size analyzer was used to analyze particle size, Zeta potential and distribution. Lysozyme degradation experiment was performed to assess the biodegradation behavior. ELISA assay was used to determine the loading efficiency, encapsulation efficiency and in vitro drug release kinetics. The data was analyzed by SPSS 19.0 software package.

Results: The BMP-2 loaded chitosan nanospheres were spherical in shape, smooth on surface and uniform dispersion without aggregation. The mean diameter was 150.85 nm. The dispersion index was 0.37, and zeta potential was +35.42 mV. The average loading efficiency and encapsulation efficiency were (56.83 ± 2.26)% and (68.24 ± 3.83)%, respectively. Release experiment in vitro showed that the releasing property of BMP-2 loaded chitosan nanospheres was consistent with two-phase kinetic regulation and BMP-2 was controlled to release from the chitosan nanospheres over 30 days.

Conclusions: The BMP-2 loaded chitosan nanospheres prepared by ionic crosslinking method are successfully prepared which show a good controlled release property. It provides the basis for further application in bone tissue engineering.

Download full-text PDF

Source

Publication Analysis

Top Keywords

chitosan nanospheres
28
bmp-2 loaded
20
loaded chitosan
20
zeta potential
12
chitosan
8
size zeta
8
nanospheres prepared
8
prepared ionic
8
ionic crosslinking
8
crosslinking method
8

Similar Publications

Remineralization and bacterial inhibition of early enamel caries surfaces by carboxymethyl chitosan lysozyme nanogels loaded with antibacterial drugs.

J Dent

January 2025

Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China. Electronic address:

Objective: This study aimed to develop dual-functional CMC-LYZ-ACP nanogels. Three different antibacterial substances, tea polyphenols (TPs), silver nitrate (AgNO), and chlorhexidine (CHX) are then combined to form three dual-functional CMC-LYZ-ACP nanogels for remineralization and antibacterial purposes.

Methods: An in vitro model of Streptococcus mutans biofilm was established to analyze the inhibitory effect of the antibacterial-remineralizing dual-functional nanogels on the biofilm.

View Article and Find Full Text PDF

Photodynamic disruption of a polymicrobial biofilm of two periodontal species using indocyanine green-loaded nanospheres.

Photodiagnosis Photodyn Ther

December 2024

Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-Dori, Chikusa-ku, Nagoya, Aichi 464-8651, Japan. Electronic address:

Objective: Antimicrobial photodynamic therapy (aPDT) is considered a potential treatment for biofilm infections, which have become an increasing health issue because of the rise in antimicrobial resistance. This study aimed to evaluate the bactericidal effect of aPDT using indocyanine green-loaded nanospheres with chitosan coating (ICG-Nano/c) against polymicrobial periodontal biofilms.

Methods: Composite biofilms of Porphyromonas gingivalis and Streptococcus gordonii were constructed in 96-well plates, and aPDT with ICG-Nano/c and an 810 nm diode laser was performed either by direct irradiation or transmitting irradiation through a 3-mm-thick gingival model.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the use of poly-lactic-co-glycolic acid (PLGA) and chitosan (CS) as delivery systems for a ribosome protein (TgRPS2) to create potential vaccines against a harmful zoonotic disease affecting humans and animals.
  • Researchers synthesized TgRPS2-PLGA and TgRPS2-CS nanospheres using novel techniques and evaluated their efficacy and toxicity before immunizing mice to assess immune responses.
  • Results indicated that the nanospheres effectively stimulated immune responses, increased specific immune cell populations, and inhibited pathogen replication in affected tissues, suggesting their potential as preventive agents against toxoplasmosis.
View Article and Find Full Text PDF
Article Synopsis
  • The study focused on the effectiveness of morphine sulfate nano-controlled release microspheres in alleviating visceral pain caused by tumors in mice models.
  • Researchers used various experimental groups to compare the pain-relief effects of morphine-loaded microspheres with a control group and found significant reductions in pain responses and improved pain thresholds among the treated groups.
  • Results indicated a high drug release rate from the microspheres, and the treatment led to notable changes in neurotransmitter levels in the brain linked to pain perception, with no significant adverse side effects observed.
View Article and Find Full Text PDF

Exploring the promising role of chitosan delivery systems in breast cancer treatment: A comprehensive review.

Carbohydr Res

November 2024

Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra, India, 410206. Electronic address:

Breast cancer presents a significant global health challenge, driving the development of novel treatment strategies for therapeutic interventions. Nanotechnology has emerged as a promising avenue for addressing this challenge, with Chitosan (CS) nanoparticles receiving prominence due to their unique characteristics and multitude of potential applications. This review provides a comprehensive overview of the role of Chitosan nanoparticles in breast cancer therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: