Chemical Entity Recognition and Resolution to ChEBI.

ISRN Bioinform

Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.

Published: May 2015

Chemical entities are ubiquitous through the biomedical literature and the development of text-mining systems that can efficiently identify those entities are required. Due to the lack of available corpora and data resources, the community has focused its efforts in the development of gene and protein named entity recognition systems, but with the release of ChEBI and the availability of an annotated corpus, this task can be addressed. We developed a machine-learning-based method for chemical entity recognition and a lexical-similarity-based method for chemical entity resolution and compared them with Whatizit, a popular-dictionary-based method. Our methods outperformed the dictionary-based method in all tasks, yielding an improvement in F-measure of 20% for the entity recognition task, 2-5% for the entity-resolution task, and 15% for combined entity recognition and resolution tasks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393067PMC
http://dx.doi.org/10.5402/2012/619427DOI Listing

Publication Analysis

Top Keywords

entity recognition
20
chemical entity
12
recognition resolution
8
method chemical
8
recognition
5
entity
5
chemical
4
resolution chebi
4
chebi chemical
4
chemical entities
4

Similar Publications

Named Entity Recognition (NER) is an essential component of numerous Natural Language Processing (NLP) systems, with the aim of identifying and classifying entities that have specific meanings in raw text, such as person (PER), location (LOC), and organization (ORG). Recently, Deep Neural Networks (DNNs) have been extensively applied to NER tasks owing to the rapid development of deep learning technology. However, despite their advancements, these models fail to take full advantage of the multi-level features (e.

View Article and Find Full Text PDF

Introduction and importance: Extrapelvic endometriosis, confined exclusively to the body of the rectus abdominis muscle, is a rare form of abdominal wall endometriosis. While its etiopathology remains unclear, it is often diagnosed in healthy women who present with atypical symptoms and localization unrelated to any incision site, or in the absence of a history of endometriosis or previous surgery. Presentation of the case: Here, we describe a unique case of intramuscular endometriosis of the rectus abdominis muscle in a healthy 39-year-old Caucasian woman.

View Article and Find Full Text PDF

Multinucleate cell angiohistiocytoma (MCAH) is a rare benign cutaneous entity. It classically presents as slowly progressive erythematous to violaceous papules on the distal extremities of middle-aged or elderly women. The entity may clinically resemble granuloma annulare, lichen planus, and several cutaneous vascular proliferations.

View Article and Find Full Text PDF

The antioxidant property of CAPE depends on TRPV1 channel activation in microvascular endothelial cells.

Redox Biol

January 2025

Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Av. El Líbano 5524, Macul, Santiago, 7830490, Chile. Electronic address:

Caffeic acid phenethyl ester (CAPE) is a hydrophobic phytochemical typically found in propolis that acts as an antioxidant, anti-inflammatory and cardiovascular protector, among several other properties. However, the molecular entity responsible for recognising CAPE is unknown, and whether that molecular interaction is involved in developing an antioxidant response in the target cells remains an unanswered question. Herein, we hypothesized that a subfamily of TRP ion channels works as the molecular entity that recognizes CAPE at the plasma membrane and allows a fast shift in the antioxidant capacity of intact endothelial cells (EC).

View Article and Find Full Text PDF

G Protein-Coupled Receptor Heteromers in Brain: Functional and Therapeutic Importance in Neuropsychiatric Disorders.

Annu Rev Pharmacol Toxicol

January 2025

Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; email:

G protein-coupled receptors (GPCRs) represent the largest family of plasma membrane proteins targeted for therapeutic development. For decades, GPCRs were investigated as monomeric entities during analysis of their pharmacology or signaling and during drug development. However, a considerable body of evidence now indicates that GPCRs function as dimers or higher-order oligomers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!