A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ionizing radiation induced degradation of diuron in dilute aqueous solution. | LitMetric

Ionizing radiation induced degradation of diuron in dilute aqueous solution.

Chem Cent J

Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences, Budapest, Hungary.

Published: May 2015

Background: Cutting edge technologies based on Advanced Oxidation Processes (AOP) are under development for the elimination of highly persistent organic molecules (like pesticides) from water matrices. Among them, ionizing radiation treatment represents a promising technology that requires no additives and can be easily adapted to an industrial scale. In these processes several reactive species are produced, mainly powerful oxidizing radicals inducing the degradation. This paper investigates the reactions taking place in dilute aqueous solutions of a hazardous pollutant (diuron) during irradiation.

Results: Irradiation of aqueous diuron solutions resulted in effective degradation of the solute mainly due to the reactions of hydroxyl radicals formed in water radiolysis. Hydroxyl radical reacts with diuron with a second order rate constant of (5.8 ± 0.3) × 10(9) mol(-1) dm(3) s(-1). The main reaction is addition to the ring forming hydroxycyclohexadienyl radical. 30 - 50% of hydroxyl radical reactions induce dechlorination. Reactions with the methyl groups or with the α-amino group have low contribution to the transformation. The presence of dissolved oxygen enhances the rate of degradation; one hydroxyl radical on average induces five-electron oxidations. The high oxidation rate is attributed to the reaction of some of the primarily formed organic radicals with dissolved O2 and the subsequent reactions of the peroxy radicals.

Conclusion: The presence of dissolved oxygen is highly important to achieve efficient ionizing radiation induced degradation of diuron in dilute aqueous solution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4415950PMC
http://dx.doi.org/10.1186/s13065-015-0097-0DOI Listing

Publication Analysis

Top Keywords

ionizing radiation
12
dilute aqueous
12
hydroxyl radical
12
radiation induced
8
induced degradation
8
degradation diuron
8
diuron dilute
8
aqueous solution
8
presence dissolved
8
dissolved oxygen
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!