We approached the problems of event detection, argument identification, and negation and speculation detection in the BioNLP'09 information extraction challenge through concept recognition and analysis. Our methodology involved using the OpenDMAP semantic parser with manually written rules. The original OpenDMAP system was updated for this challenge with a broad ontology defined for the events of interest, new linguistic patterns for those events, and specialized coordination handling. We achieved state-of-the-art precision for two of the three tasks, scoring the highest of 24 teams at precision of 71.81 on Task 1 and the highest of 6 teams at precision of 70.97 on Task 2. We provide a detailed analysis of the training data and show that a number of trigger words were ambiguous as to event type, even when their arguments are constrained by semantic class. The data is also shown to have a number of missing annotations. Analysis of a sampling of the comparatively small number of false positives returned by our system shows that major causes of this type of error were failing to recognize second themes in two-theme events, failing to recognize events when they were the arguments to other events, failure to recognize nontheme arguments, and sentence segmentation errors. We show that specifically handling coordination had a small but important impact on the overall performance of the system. The OpenDMAP system and the rule set are available at http://bionlp.sourceforge.net.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4414063 | PMC |
http://dx.doi.org/10.1111/j.1467-8640.2011.00405.x | DOI Listing |
Comput Intell
November 2011
Center for Computational Pharmacology, University of Colorado Denver School of Medicine, Aurora, CO, USA.
We approached the problems of event detection, argument identification, and negation and speculation detection in the BioNLP'09 information extraction challenge through concept recognition and analysis. Our methodology involved using the OpenDMAP semantic parser with manually written rules. The original OpenDMAP system was updated for this challenge with a broad ontology defined for the events of interest, new linguistic patterns for those events, and specialized coordination handling.
View Article and Find Full Text PDFBMC Bioinformatics
January 2008
Center for Computational Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
Background: Information extraction (IE) efforts are widely acknowledged to be important in harnessing the rapid advance of biomedical knowledge, particularly in areas where important factual information is published in a diverse literature. Here we report on the design, implementation and several evaluations of OpenDMAP, an ontology-driven, integrated concept analysis system. It significantly advances the state of the art in information extraction by leveraging knowledge in ontological resources, integrating diverse text processing applications, and using an expanded pattern language that allows the mixing of syntactic and semantic elements and variable ordering.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!