Systemic delivery of amphiphobic drugs (insoluble in both water and oil) represents a formidable challenge in drug delivery. This work aimed to engineer a functional mesoporous carbon material to efficiently load SNX-2112, an amphiphobic anticancer agent, and to evaluate its performance in tumor-targeting delivery. Hydrothermal reaction combined with high-temperature activation was used to fabricate glucose-based mesoporous carbon nanospheres (MCNs). SNX-2112-loaded MCNs stabilized by phospholipid (SN-PMCNs) were prepared by the absorption/solvent diffusion/high-pressure homogenization method. The obtained SN-PMCNs were 180nm around in particle size, showing a high drug load (42.7%) and acceptable physical stability. SN-PMCNs demonstrated an enhanced in vitro antitumor effect and increased uptake into cancer cells in comparison with the formulation of SNX-2112 solution (SN-Sol). The in vivo antitumor effect and biodistribution in 4T1 xenograft tumor mice, a breast cancer model, were also significantly improved through SN-PMCNs. It was shown that specific clathrin-dependent and nonspecific caveolae-dependent endocytosis were involved in the cellular trafficking of SN-PMCNs. Glucose transporter-mediated transport, prolonged body residence time and improved biodistribution via EPR effect were the main mechanisms of enhanced antitumor effect. SN-PMCNs have presented excellent tumor targeting properties and should be a promising carrier to address the systemic delivery of SNX-2112.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2015.04.023DOI Listing

Publication Analysis

Top Keywords

mesoporous carbon
12
systemic delivery
12
carbon nanospheres
8
delivery amphiphobic
8
enhanced antitumor
8
sn-pmcns
6
delivery
5
phospholipid-stabilized mesoporous
4
nanospheres versatile
4
versatile carriers
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!