Lyophilized wafers comprising sodium alginate (SA) and gelatin (GE) (0/100, 75/25, 50/50, 25/75, 0/100 SA/GE, respectively) with silver sulfadiazine (SSD, 0.1% w/w) have been developed for potential application on infected chronic wounds. Polymer-drug interactions and physical form were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), respectively, while morphological structure was examined using scanning electron microscopy (SEM). Functional characteristics [(mechanical hardness and adhesion using texture analyzer, and swelling capacity)] of blank wafers were determined in order to select the optimal formulations for drug loading. Finally, the in vitro drug dissolution properties of two selected drug loaded wafers were investigated. There was an increase in hardness and a decrease in mucoadhesion with increasing GE content. FTIR showed hydrogen bonding and electrostatic interaction between carboxyl of SA and amide of GE but no interaction between the polymers and drug was observed, with XRD showing that SSD remained crystalline during gel formulation and freeze-drying. The results suggest that 75/25 SA/GE formulations are the ideal formulations due to their uniformity and optimal mucoadhesivity and hydration. The drug loaded wafers showed controlled release of SSD over a 7h period which is expected to reduce bacterial load within infected wounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2015.04.048 | DOI Listing |
Pharmaceutics
January 2025
University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia.
To develop and evaluate graphene oxide/gelatin/alginate scaffolds for advanced wound therapy capable of mimicking the native extracellular matrix (ECM) and bio-stimulating all specific phases of the wound healing process, from inflammation and proliferation to the remodeling of damaged skin tissue in three dimensions. The scaffolds were engineered as interpenetrating polymeric networks by the crosslinking reaction of gelatin in the presence of alginate and characterized by structural, morphological, mechanical, swelling properties, porosity, adhesion to the skin tissue, wettability, and in vitro simultaneous release of the active agents. Biocompatibility of the scaffolds were evaluated in vitro by MTT test on fibroblasts (MRC5 cells) and in vivo using assay.
View Article and Find Full Text PDFBiomedicines
January 2025
Embrapa Genetic Resources and Biotechnology, Laboratory of Nanobiotechnology (LNANO), Brasília 70770-917, DF, Brazil.
Machine learning is used to analyze images by training algorithms on data to recognize patterns and identify objects, with applications in various fields, such as medicine, security, and automation. Meanwhile, histological cross-sections, whether longitudinal or transverse, expose layers of tissues or tissue mimetics, which provide crucial information for microscopic analysis. : This study aimed to employ the Google platform "Teachable Machine" to apply artificial intelligence (AI) in the interpretation of histological cross-section images of hydrogel filaments.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Himachal Pradesh University, Shimla 171005, India. Electronic address:
Introduction: The rapid progress in polymer science has designed innovative materials for biomedical applications. In the case of drug design, for each new therapeutic agent, a drug delivery system (DDS) is required to improve its pharmacokinetic and pharmacodynamic parameters. Therefore, significant research has been carried out to develop drug delivery (DD) carriers for these new therapeutic agents.
View Article and Find Full Text PDFGels
January 2025
Manufacturing and Mechanical Engineering Technology, Rochester Institute of Technology, Rochester, NY 14623, USA.
The field of tissue engineering has made significant advancements with extrusion-based bioprinting, which uses shear forces to create intricate tissue structures. However, the success of this method heavily relies on the rheological properties of bioinks. Most bioinks use shear-thinning.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
The development of biocompatible hydrogels for 3D bioprinting is essential for creating functional tissue models and advancing preclinical drug testing. This study investigates the formulation, printability, mechanical properties, and biocompatibility of a novel Alg-Gel hydrogel blend (alginate and gelatin) for use in extrusion-based 3D bioprinting. A range of hydrogel compositions were evaluated for their rheological behavior, including shear-thinning properties, storage modulus, and compressive modulus, which are crucial for maintaining structural integrity during printing and supporting cell viability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!