An evolutionary analysis of nitric oxide reductase gene norV in enterohemorrhagic Escherichia coli O157.

Infect Genet Evol

Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba 260-8670, Japan.

Published: July 2015

AI Article Synopsis

Article Abstract

A novel virulence gene, norV, that encodes nitric oxide (NO) reductase, was examined to investigate the emergence of enterohemorrhagic Escherichia coli (EHEC) O157 subgroup C clusters 2 and 3 from subgroup C cluster 1. Deletion of norV occurred at a point between cluster 1 and cluster 2 just after or at the same time that an stx2 bacteriophage, which retains Shiga toxin 2 gene, was inserted into wrbA, which encodes a novel multimeric flavodoxin-like protein, in EHEC O157. Sensitivity of NO to anaerobic growth was correlated with the deletion of norV in all EHEC O157 individuals tested. The C467A mutation of fimH, which encodes minor component of type 1 fimbriae, occurred within cluster 1, not as a transition from cluster 1 to cluster 2, indicating that there is a cluster 1 minority branch that leads to cluster 2. These data refine the evolutionary history of an emerging EHEC O157.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meegid.2015.04.027DOI Listing

Publication Analysis

Top Keywords

ehec o157
16
nitric oxide
8
oxide reductase
8
gene norv
8
enterohemorrhagic escherichia
8
escherichia coli
8
cluster
8
deletion norv
8
cluster cluster
8
o157
5

Similar Publications

An efficient, high-throughput enrichment system for the rapid detection of E. coli at low concentrations in water.

Anal Chim Acta

February 2025

School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China; University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Applied Optics, Changchun, 130033, China; Key Laboratory of Advanced Manufacturing for Optical Systems, Chinese Academy of Sciences, Changchun, 130033, China. Electronic address:

Certain virulent strains of Escherichia coli (E. coli), notably the enterohemorrhagic serotype O157:H7, are recognized for causing diarrhea, gastroenteritis, and a range of illnesses that pose significant risks to public health and the safety of drinking water supplies. Early detection and management of E.

View Article and Find Full Text PDF

Enterohemorrhagic (EHEC) is a common pathotype of that causes numerous outbreaks of foodborne illnesses. EHEC is a zoonotic pathogen that is transmitted from animals to humans. Ruminants, particularly cattle, are considered important reservoirs for virulent EHEC strains.

View Article and Find Full Text PDF

CRISPR/Cas Systems as Diagnostic and Potential Therapeutic Tools for Enterohemorrhagic .

Arch Immunol Ther Exp (Warsz)

January 2025

Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, Idaho, USA.

Following its discovery as an adaptive immune system in prokaryotes, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) system has been developed into a multifaceted genome editing tool. This review compiles findings aimed at implementation of this technology for selective elimination or attenuation of enterohemorrhagic (EHEC). EHEC are important zoonotic foodborne pathogens that cause hemorrhagic colitis and can progress to the life-threatening hemolytic uremic syndrome (HUS).

View Article and Find Full Text PDF

A drop dispenser for simplifying on-farm detection of foodborne pathogens.

PLoS One

December 2024

Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, United States of America.

Nucleic-acid biosensors have emerged as useful tools for on-farm detection of foodborne pathogens on fresh produce. Such tools are specifically designed to be user-friendly so that a producer can operate them with minimal training and in a few simple steps. However, one challenge in the deployment of these biosensors is delivering precise sample volumes to the biosensor's reaction sites.

View Article and Find Full Text PDF

Molecular characterization and safety properties of multi drug-resistant Escherichia coli O157:H7 bacteriophages.

BMC Microbiol

December 2024

Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North‒West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa.

The increase in multi drug resistance (MDR) amongst food-borne pathogens such as Escherichia coli O157:H7, coupled with the upsurge of food-borne infections caused by these pathogens is a major public health concern. Lytic phages have been employed as an alternative to antibiotics for use against food-borne pathogens. However, for effective application, phages should be selectively toxic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!