Many fusion genes, which are the result of chromosomal translocation and work as an oncogene, have been recently identified, but their mode of actions is still unclear. Here, we performed a yeast mutant screening for oncogenes of Ewing's sarcoma to easily identify essential regions responsible for fusion protein functions using a yeast genetic system. Three kinds of oncogenes including EWS/FLI1, EWS/ERG, and EWS/E1AF exhibited growth inhibition in yeast. In this screening, we identified 13 single amino acid substitution mutants which could suppress growth inhibition by oncogenes. All of the point mutation positions of the EWS/ETS family proteins were located within the ETS domain, which is responsible for the interaction with a specific DNA motif. Eight-mutated residues within the ETS domain matched to 13 completely conserved amino acid residues in the human ETS domains. Moreover, mutants also showed reduced transcriptional activities on the DKK2 promoter, which is upregulated by the EWS/ETS family, compared to that of the wild type. These results suggest that the ETS domain in the EWS/ETS family proteins may be a primary target for growth inhibition of Ewing's sarcoma and that this yeast screening system can be applied for the functional screening of the oncogenes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-015-6621-2DOI Listing

Publication Analysis

Top Keywords

screening oncogenes
12
ewing's sarcoma
12
growth inhibition
12
ews/ets family
12
ets domain
12
mutant screening
8
oncogenes ewing's
8
sarcoma yeast
8
yeast screening
8
amino acid
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!