As the pattern size is cross to virus and molecular sizes, the fabrication cost becomes important. Advantages of the block copolymer lithography (BCPL) through the nanoimprint lithography (NIL) are no diffraction limits, simple and cheap process, and complementary for each of major draw- backs. In this paper, the directed self-assembly lithography of BCP with NIL is successfully modeled and simulated by using the Navier-Stokes equation for the BCP filling process, the multi-thin layer method and the Dill's equation for the UV exposure process, and the self-consistent field theory (SCFT) for the self-assemble process. The impact of the simulation parameters on the pattern formation is discussed and analyzed by using the response surface methodology (RSM).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2014.8827 | DOI Listing |
Nanomaterials (Basel)
January 2025
Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan.
Cancer diagnostics often faces challenges, such as invasiveness, high costs, and limited sensitivity for early detection, emphasizing the need for improved approaches. We present a surface-enhanced Raman scattering (SERS)-based platform leveraging inverted pyramid SU-8 nanostructured substrates fabricated via nanoimprint lithography. These substrates, characterized by sharp apices and edges, are further functionalized with (3-aminopropyl)triethoxysilane (APTES), enabling the uniform self-assembly of AuNPs to create a highly favorable configuration for enhanced SERS analysis.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
The commercialization of metasurfaces is crucial for real-world applications such as wearable sensors, pigment-free color pixels, and augmented and virtual reality devices. Nanoparticle-embedded resin-based nanoimprint lithography (PER-NIL) has shown itself to be a low-cost, high-throughput manufacturing method enabling the replication of high-index nanostructures. It has been extensively integrated into the fabrication of hologram metasurfaces, metalenses, and sensors due to its procedural simplicity.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Hefei University of Technology, Hefei 230009, China.
This paper proposes an improved algorithm based on the phase extraction of the Moiré fringe for wafer-mask alignment in nanoimprint lithography. The algorithm combines the strengths of the two-dimensional fast Fourier transform (2D-FFT) and two-dimensional window Fourier filtering (2D-WFF) to quickly and accurately extract the fundamental frequencies of interest, eliminate noise in the fundamental frequency band by using the threshold of the local spectrum, and effectively suppress spectral leakage by using a Gaussian window with outstanding sidelobe characteristics while overcoming their limitations, such as avoiding the time-consuming parameter adjustment. The phase extraction accuracy determines the misalignment measurement accuracy, and the alignment accuracy is enhanced to the nanometer level, which is 15.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamatecho, Suita 564-8680, Osaka, Japan.
The increase in infections derived from biofilms from spp. prompted us to develop novel strategies to inhibit biofilm development. Nanoscale protrusion structures (nanopillars) observed on the wings of dragonflies and cicadas have recently gained notable attention owing to their physical, antimicrobial, and bactericidal properties.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
State Key Laboratory of Luminescent Materials and Devices &, South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy &, Information Polymer Materials, South China University of Technology, 510640, Guangzhou, P. R. China.
Nanoimprint lithography (NIL) has been broadly applied in the fabrication of nano-patterned polymer films for cost-efficiency and high through-put; however, the intrinsic tradeoff between mechanical strength and residual stress of polymer films significantly limits the NIL resolution while the harsh processing conditions limit its versatile applications to different substrates. Herein, 1 nm metal oxide cluster, phosphotungstic acid (PTA), is used to complex with polyvinyl alcohol (PVA) for high-resolution NIL that can be operated at large-scale and mild conditions. The ultra-small size of PTA enables dense supramolecular interaction with PVA for the diminished crystallinity and accelerated chain dynamics that help relax the residual stress during film casting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!