Reduced graphene oxide (RGO) based polyurethane (PU) nanocomposites have been successfully prepared without using solvent by in-situ polymerization. RGO was derived from microwave (MW) irradiation of graphite oxide (GO) powder prepared by a modified Hummer's method. A minimum amount of poly(tetramethylene glycol) (PTMEG) was added during the dispersion of RGO in a solvent to stabilize the graphene sheets and to prevent RGO from the restacking after the removal of the solvent. After the reaction of RGO with 4,4'-diphenylmethane diisocyanate (MDI), we obtained the concentrate of RGO in MDI with a minimum amount of PTMEG. Our method facilitated the fine dispersion of RGO in PU elastomers and improved the interfacial strength between RGO and PU. With the incorporation of 2.0 wt% of RGO, the tensile strength and Young's modulus of the PU nanocomposites increased by 30% and 50%, respectively without sacrificing the elongation at break. It was found that the crystalline portion of hard segments of the PU was lowered by the RGO in the nanocomposites.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2014.8824DOI Listing

Publication Analysis

Top Keywords

rgo
10
reduced graphene
8
minimum amount
8
dispersion rgo
8
thermal mechanical
4
mechanical properties
4
properties reduced
4
graphene oxide/polyurethane
4
oxide/polyurethane nanocomposite
4
nanocomposite reduced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!