In this study, trigonelline, a niacin-related compound was incorporated into chitosan nanoparticles through ion-complex formation between anionic carboxylic acid group of trigonelline and cationic amine group of chitosan. Morphology of trigonelline-incorporated chitosan nanoparticles have spherical shape with less than 500 nm in size and thier size distribution showed quite unimodel phase. Even though trigonelline and trigonelline-incorporated chitosan nanoparticles were not significantly affected to the proliferation of tumor cells, invasion of tumor cells was effectively inhibited by trigonelline-incorporated chitosan nanoparticles. We suggested that trigonelline-incorporated chitosan nanoparticles are promising candidate for inhibition of tumor cell invasion.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2014.8818DOI Listing

Publication Analysis

Top Keywords

chitosan nanoparticles
24
trigonelline-incorporated chitosan
20
tumor cells
8
chitosan
7
nanoparticles
6
trigonelline-incorporated
5
antitumor activity
4
activity trigonelline-incorporated
4
nanoparticles study
4
study trigonelline
4

Similar Publications

Sprayable Hydrogel for pH-Responsive Nanozyme-Derived Bacteria-Infected Wound Healing.

ACS Appl Mater Interfaces

January 2025

School of Chemistry & Materials Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, P. R. China.

Long-term inflammation and persistent bacterial infection are primary contributors to unhealed chronic wounds. The use of conventional antibiotics often leads to bacteria drug resistance, diminishing wound healing effectiveness. Nanozymes have become a promising alternative to antimicrobial materials due to their low cost, easy synthesis, and good stability.

View Article and Find Full Text PDF

Liver cancer is a prevalent and significant cause of death in humans. The use of novel biodegradable materials for various biomedical applications is being recently recommended as complementary as well as alternative solution for traditional chemotherapy. This study focuses on the synthesis of biodegradable nanocarriers [chitosan-coated poly(lactic acid) NPs (Cht-PLA NPs)] for the delivery of an anticancer drug vinblastine (Vbx) and to evaluate its therapeutic potential in human hepatocellular carcinoma (HepG2) cells.

View Article and Find Full Text PDF

Novel hybrid system based on carboxymethyl chitosan hydrogel encapsulating drug loaded nanoparticles for prolonged release of Vancomycin in the treatment of bacterial infection.

J Pharm Sci

January 2025

Institut Europeen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095, Montpellier, France. Electronic address:

Current bacterial infections clinical treatments, such as intravenous antibiotic administration and local injection, suffer from short action duration, repeated administrations, and severe cell toxicity. To address these limitations, it is imperative to develop sustained drug release system with prolonged antimicrobial effects. In this work, a hybrid system was prepared using EDC/NHS catalyzed crosslinking-based carboxymethyl chitosan (CMCS) hydrogel as a carrier to encapsulate biodegradable nanoparticles (NPs) loaded with vancomycin, an efficient antibacterial drug.

View Article and Find Full Text PDF

Enhanced porous titanium biofunctionalization based on novel silver nanoparticles and nanohydroxyapatite chitosan coatings.

Int J Biol Macromol

January 2025

Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain. Electronic address:

Titanium is widely used for implants however it presents limitations such as infection risk, stress shielding phenomenon, and poor osseointegration. To address these issues, a novel approach was proposed that involves fabricating porous titanium substrates, to reduce implant stiffness, minimizing stress shielding and bone resorption, and applying polymeric coatings to improve bioactivity. Composite coating prepared from chitosan, silver nanoparticles, and nanohydroxyapatite was optimized to enhance antibacterial properties and promote osseointegration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!