Peroxynitrite has been implicated in β-cell dysfunction and insulin resistance in obesity. Chemical catalysts that destroy peroxynitrite, therefore, may have therapeutic value for treating type 2 diabetes. To this end, we have recently demonstrated that Mn(III) bis(hydroxyphenyl)-dipyrromethene complexes, SR-135 and its analogs, can effectively catalyze the decomposition of peroxynitrite in vitro and in vivo through a 2-electron mechanism (Rausaria et al., 2011). To study the effects of SR-135 on glucose homeostasis in obesity, B6D2F1 mice were fed with a high fat-diet (HFD) for 12 weeks and treated with vehicle, SR-135 (5mg/kg), or a control drug SRB for 2 weeks. SR-135 significantly reduced fasting blood glucose and insulin levels, and enhanced glucose tolerance as compared to HFD control, vehicle or SRB. SR-135 also enhanced glucose-stimulated insulin secretion based on ex vivo studies. Moreover, SR-135 increased insulin content, restored islet architecture, decreased islet size, and reduced tyrosine nitration and apoptosis. These results suggest that a peroxynitrite decomposing catalyst enhances β-cell function and survival under nutrient overload.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4533897PMC
http://dx.doi.org/10.1016/j.abb.2015.04.005DOI Listing

Publication Analysis

Top Keywords

peroxynitrite decomposing
8
decomposing catalyst
8
catalyst enhances
8
enhances β-cell
8
β-cell function
8
function survival
8
b6d2f1 mice
8
mice fed
8
fed high
8
sr-135
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!