Synthesis and characterization of ibandronate-loaded silica nanoparticles and collagen nanocomposites.

Curr Pharm Biotechnol

IQUIMEFA-CONICET. Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Junin 956, Piso 3° (1113), Buenos Aires, Argentina.

Published: February 2016

Non-porous bare silica nanoparticles, amine modified silica nanoparticles and mesoporous particles, were evaluated as carriers for sodium ibandronate. The synthesized nanoparticles were characterized by SEM, TEM, DLS and porosity. Then, their capacity to incorporate a bisphosphonate drug (sodium ibandronate) and the in vitro release behavior was analyzed by capillary electrophoresis. Mesoporous and amine-modified particles showed higher levels of drug incorporation, 44.68 mg g(-1) and 28.90 mg g(-1), respectively. The release kinetics from the two types of particles was similar following a first order kinetics. However, when these particles were included into collagen hydrogels only mesoporous nanoparticles had a sustained release for over 10 days. The biocompatibility of mesoporous particles towards Saos-2 cells was also evaluated by the MTT assay observing an increase in cell viability for concentrations lower than 0.6 mg ml(-1) of particles and a decrease for concentrations over 1.2 mg ml(-1). Furthermore, when these particles were incubated with mesenchymal cells it was observed that they had the capacity to promote the differentiation of the cells with a significant increase in the alkaline phosphatase activity.

Download full-text PDF

Source
http://dx.doi.org/10.2174/138920101607150427113355DOI Listing

Publication Analysis

Top Keywords

silica nanoparticles
12
mesoporous particles
8
sodium ibandronate
8
ml-1 particles
8
particles
7
nanoparticles
5
synthesis characterization
4
characterization ibandronate-loaded
4
ibandronate-loaded silica
4
nanoparticles collagen
4

Similar Publications

A novel fluorescence sensing nanoplatform (CDs/AuNCs@ZIF-8) encapsulating carbon dots (CDs) and gold nanoclusters (AuNCs) within a zeolitic imidazolate framework-8 (ZIF-8) was developed for ratiometric detection of formaldehyde (FA) in the medium of hydroxylamine hydrochloride (NHOH·HCl). The nanoplatform exhibited pink fluorescence due to the aggregation-induced emission (AIE) effect of AuNCs and the internal filtration effect (IFE) between AuNCs and CDs. Upon reaction between NHOH·HCl and FA, a Schiff base formed via aldehyde-diamine condensation, releasing hydrochloric acid.

View Article and Find Full Text PDF

Rapid identification of pathogenic bacteria from clinical positive blood cultures virus-like magnetic bead enrichment and MALDI-TOF MS profiling.

Analyst

January 2025

Institutes of Biomedical Sciences & Shanghai Stomatological Hospital, Department of Chemistry, Fudan University, Shanghai 200433, China.

Reducing the time required for the detection of bacteria in blood samples is a critical area of investigation in the field of clinical diagnosis. Positive blood culture samples often require a plate culture stage due to the interference of blood cells and proteins, which can result in significant delays before the isolation of single colonies suitable for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. In this study, we developed a non-specific enrichment strategy based on SiO-encapsulated FeO nanoparticles combined with MALDI-TOF MS for direct identification of bacteria from aqueous environments or positive blood culture samples.

View Article and Find Full Text PDF

Water-based acrylic emulsions are a crucial component of water-based ink. Preventing visible cracks in emulsion coating during drying is a great challenge due to the high polarity and high surface tension of water. Herein, we propose that the cracking resistance of the coating can be enhanced through the incorporation of hydrophobic silica nanoparticles.

View Article and Find Full Text PDF

A Pt(II) aqua complex supported by mesoporous silica nanoparticle (MSN)-immobilized sulfonated CNN pincer ligand featuring a rigid SiO tether was prepared. This hybrid material was tested as a catalyst in H/D exchange reactions of C(sp)-H bonds of selected aromatic substrates and DO-2,2,2-trifluoroethanol- (TFE-) mixtures or CDCOD acting as a source of exchangeable deuterium. The catalyst immobilization served as a means to not only enable the catalyst's recyclability but also minimize the coordination of sulfonate groups and the metal centers originating from different catalyst's moieties that would preserve reactive Pt(OH) fragments needed for catalytic C-H bond activation.

View Article and Find Full Text PDF

Chemotherapeutic drugs often fail to provide long-term efficacy due to their lack of specificity and high toxicity. To enhance the biosafety and reduce the side effects of these drugs, various nanocarrier delivery systems have been developed. In this study, we loaded the anticancer drug doxorubicin (DOX) and an MRI contrast agent into silica nanoparticles, coating them with pH-responsive and tumor cell-targeting polymers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!