This study aimed to evaluate glycerol monooleate (GMO) as a carrier to develop viscoelastic and injectable sustained-release drug delivery systems. The potential pro- and antioxidant activity of the developed hydrolipidic gels were evaluated by measuring the production of ROS by polymorphonuclear leukocytes (PMNs). In addition, the biocompatibility and effectiveness of two selected gel candidates were evaluated in vivo by evaluating the benefit of a single intraarticular injection of these new treatments in a model of osteoarthritis in rabbits. The in vitro study demonstrated that the carrier F1 did not have a pro-oxidative effect and even protected PMNs against natural auto-activation, regardless of the incorporation of either clonidine chlorhydrate or betamethasone dipropionate. The in vivo study demonstrated that F1 and F1-BDP induced a loss of cartilage quality in comparison to the control and reference groups but that the lesions of cartilage observed were generally mild, with not much full-depth erosion. Moreover, no exacerbating inflammation was observed when considering the synovial membranes and the PGE2 and CRP levels. These results seemed to demonstrate that the sustained-release formulation based on GMO could be well-tolerated after intraarticular injection. Moreover, it could have the potential to prevent inflammatory conditions while sustaining drug activity locally over weeks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2015.04.064 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!